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Abstract
Let 𝑋 be a scheme. Let Gal(𝑋) be the topological category whose objects are

geometric points of 𝑋 and whose morphisms are specialisations thereof. If 𝑋 is a
scheme of finite type over a finitely generated field 𝑘 of characteristic zero, then the
category Gal(𝑋) acquires a continuous action of the absolute Galois group 𝐺𝑘 of 𝑘.
Our main result is that the resulting functor from reduced normal schemes of finite
type over 𝑘 to topological categories with an action of𝐺𝑘 and functors that preserve
minimal objects is fully faithful.

The category Gal(𝑋) is a form of MacPherson’s exit-path category for the étale
topology. Exodromy refers to the equivalence between representations of Gal(𝑋)
and constructible sheaves on𝑋. Togetherwith a higher categorical formofHochster
Duality, this equivalence ensures that the entire étale topos of a quasicompact qua-
siseparated scheme can be reconstructed from Gal(𝑋). Voevodsky’s proof of a con-
jecture of Grothendieck then implies our main theorem.
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Introduction
Let𝑋 be a schemewith underling Zariski topological space𝑋zar. Consider the following
category Gal(𝑋).

→ An object is a geometric point 𝑥 → 𝑋, by which we mean a point whose residue
field 𝜅(𝑥) is a separable closure of the residue field 𝜅(𝑥0) of the image 𝑥0 ∈ 𝑋zar

of 𝑥.

→ For two geometric points 𝑥 → 𝑋 and 𝑦 → 𝑋, a morphism 𝑥 → 𝑦 is a speciali-
sation 𝑥 ⇜ 𝑦 – that is, a geometric point 𝑦 → 𝑋(𝑥) of the strict localisation 𝑋(𝑥)
lying over 𝑦 → 𝑋.

Specialisations 𝑥 ⇜ 𝑦 and 𝑦 ⇜ 𝑧 compose to give a specialisation 𝑥 ⇜ 𝑧. Equivalently,
Gal(𝑋) is the category of points of the étale topos of𝑋.

The category Gal(𝑋) is a kind of categorification of the absolute Galois group. The
assignment 𝑥 ↦ 𝑥0 is a conservative functor to the specialisation poset of 𝑋zar – that
is, the poset of points in which 𝑥0 ≤ 𝑦0 if and only if 𝑥0 lies in the closure of 𝑦0. The
fibre over a point 𝑥0 is 𝐵𝐺𝜅(𝑥0), where 𝐺𝜅(𝑥0) is the absolute Galois group of 𝜅(𝑥0). If 𝑋
is normal, then the space of sections over a map 𝑥0 ≤ 𝑦0 is 𝐵𝐷𝑥0≤𝑦0 , where𝐷𝑥0≤𝑦0 is the
decomposition group of 𝑥0 in the closure of 𝑦0.

As with absolute Galois groups, there is a natural topology on the set of morphisms
of Gal(𝑋), which is generated as follows. For any point 𝑢 → 𝑋 that is finite over its image
𝑢0 ∈ 𝑋zar, we form the unramified extension 𝐴 of the henselisation 𝑂ℎ𝑋,𝑢0 with residue
field the separable closure of 𝜅(𝑢0) in 𝜅(𝑢), and we write 𝑋(𝑢) ≔ Spec𝐴. Now if 𝑣 → 𝑋
is finite over its image 𝑣0 ∈ 𝑋zar, then a specialisation 𝑢 ⇜ 𝑣 is a point 𝑣 → 𝑋(𝑢) of 𝑋(𝑢)
lying over 𝑣 → 𝑋. For any such specialisation 𝑢 ⇜ 𝑣, we define the subset 𝑈(𝑢 ⇜ 𝑣) of
the set of morphisms of Gal(𝑋) consisting of those specialisations 𝑥 ⇜ 𝑦 that lie over
𝑢 ⇜ 𝑣. We endow the morphisms of Gal(𝑋) with the topology generated by the sets
𝑈(𝑢 ⇜ 𝑣). With this topology, Gal(𝑋) becomes a topological category.
ATheorem (see Theorem 14.4.7). Let 𝑘 be a finitely generated field of characteristic zero,
and let 𝐺𝑘 be its absolute Galois group. Then the assignment 𝑋 ↦ Gal(𝑋) is fully faithful
as a functor from normal 𝑘-varieties to topological categories over 𝐵𝐺𝑘 and continuous
functors over 𝐵𝐺𝑘 that carry minimal objects to minimal objects.

Thus, for any normal 𝑘-varieties𝑋 and𝑌, any continuous functor Gal(𝑋) → Gal(𝑌)
over 𝐵𝐺𝑘 that preserves minimal objects is induced by a unique morphism of schemes
𝑋 → 𝑌. In particular, the functor𝑋 ↦ Gal(𝑋) is conservative for these schemes. More-
over, a 𝑘-morphism 𝑓∶ 𝑋 → 𝑌 is an isomorphism if and only if 𝑓 induces an equiva-
lence Gal(𝑋) → Gal(𝑌) of ordinary categories.

This theorem can be regarded as a categorical version of the Anabelian Conjecture
of Alexander Grothendieck: in effect, it states that Galois-theoretic information, when
organised carefully, provides a complete invariant of normal varieties.

The category Gal(𝑋) is in effect an étale exit-path category. Bob MacPherson intro-
duced the exit-path categories of stratified topological spaces to classify constructible
sheaves in what we call the exodromy equivalence. Accordingly, our proof of Theorem A
involves the development of a stratification of the étale homotopy type and the new the-
ory of exodromy in the étale context.
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Monodromy for topological spaces
It is a truth universally acknowledged, that a local system of 𝑪-vector spaces on a con-
nected topological manifold 𝑋 is completely determined by its attached monodromy
representation, so that the choice of a point 𝑥 ∈ 𝑋 specifies an equivalence of categories

𝑀𝑥 ∶ LS(𝑋;Vect(𝑪)) ⥲ Rep𝑪(𝜋1(𝑋, 𝑥)) .

If onewants to avoid selecting a point, or if onewants to drop the connectivity hypothesis
on 𝑋, then one may combine the set of connected components and the various funda-
mental groups of 𝑋 to form the fundamental groupoid 𝛱1(𝑋). Then the monodromy
equivalence becomes

𝑀∶ LS(𝑋;Vect(𝑪)) ⥲ Fun(𝛱1(𝑋),Vect(𝑪)) .

An early insight of Dan Kan was that in a similar fashion, all the homotopy groups
and all the 𝑘 invariants of𝑋 could, in effect, be combined to form a single combinatorial
gadget – a simplicial set 𝛱∞(𝑋) called the singular simplicial set or, in contemporary
parlance, the fundamental∞-groupoid of𝑋 – which knows everything about the homo-
topy type of𝑋.

Perhaps the clearest formulation of this insight was that of DanQuillen, who showed
that the category TSpc of topological spaces and the category sSet of simplicial sets each
admit model structures – each with the conventional choice of weak equivalence – rela-
tive to which the functor

𝛱∞ ∶ TSpc→ sSet
is a right Quillen equivalence. Nowadays we go a step farther and think of 𝛱∞ as an
equivalence 𝑺 ⥲ Gpd∞ between the underlying∞-category of spaces and that of∞-
groupoids.

This fundamental∞-groupoid of𝑋 appears in derived versions of the monodromy
equivalence: for instance, the monodromy of a local system of complexes of 𝑪-vector
spaces is a functor from 𝛱∞(𝑋) to complexes, and this induces an equivalence of∞-
categories

𝑀∶ LS(𝑋;Cplx(𝑪)) ⥲ Fun(𝛱∞(𝑋),Cplx(𝑪)) .
All of these equivalences follow from the ur-example of local systems of spaces on
𝑋, which are known as parametrised homotopy types in the homotopy theory literature
[58]. These form an∞-category LS(𝑋), and there is a natural monodromy equivalence
of∞-categories

𝑀∶ LS(𝑋) ⥲ 𝛱̃∞(𝑋) ≔ Fun(𝛱∞(𝑋), 𝑺) .

Monodromy for schemes
To replace the manifold in this story with a scheme, Grothendieck identified étale local
systems on a suitable connected scheme𝑋with representations of its étale fundamental
group. Here it is not the Zariski topological space of 𝑋 that is germane but its étale
topos, and one obtains not a group but a progroup: the extended étale fundamental group
𝜋ét,ext1 (𝑋) – or, if preferred, its profinite reflection: the usual étale fundamental group
𝜋ét1 (𝑋).
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The étale fundamental group is an information-dense invariant, and Grothendieck’s
Anabelian Conjectures are roughly an investigation of the extent to which it is a com-
plete invariant for certain classes of schemes. In dimension 0, the classical theorem of
Neukirch and Uchida [66; 67; 84] ensures that two number fields are isomorphic if
and only if their absolute Galois groups are. In dimension 1, Akio Tamagawa [82] and
Shinichi Mochizuki [62] show that dominant morphisms between smooth hyperbolic
curves over suitable fields of characteristic zero can be detected at the level of funda-
mental groups. Florian Pop [70, Theorem 1] shows that an isomorphism between two
function fields over finitely generated fields can be detected at the level of Galois groups.

Eduardo Dubuc [23, §§5–6] generalised the étale fundamental group by extracting
from a topos𝑿 a fundamental progroupoid𝛱1(𝑿) and a monodromy equivalence

𝑿locsys ≃ Fun(𝛱1(𝑿), Set)

between the local systems of sets on 𝑿 and Set-valued functors on the 𝛱1(𝑿) (in the
‘pro’ sense). Following this, from an∞-topos𝑿, Jacob Lurie extracted a fundamental∞-
groupoid𝛱∞(𝑿) whose representations are monodromy representations. The caveat is
again that one is forced to contend with proöbjects:𝛱∞(𝑿) is most naturally a prospace,
called the shape of 𝑿, and its profinite completion is the homotopy type 𝛱∧∞(𝑿) of 𝑿.
Tom Bachmann and Marc Hoyois show [7, Proposition 10.1] that for any∞-topos 𝑿,
one has a natural monodromy equivalence of∞-categories

𝑿lisse ≃ Fun(𝛱∧∞(𝑿), 𝑺𝜋)

between the lisse sheaves on𝑿 – i.e., locally constant sheaves of 𝜋-finite spaces on𝑿 that
can be trivialised on a finite cover – and functors on𝛱∧∞(𝑿) valued in the∞-category 𝑺𝜋
of 𝜋-finite spaces (see also Proposition 5.14.17). This monodromy equivalence is a form
of galoisian duality. At the most abstract level, this duality arises from the fully faithful
inclusion 𝑺𝜋 ↪ Top∞ given by 𝛱 ↦ 𝛱̃ ≔ Fun(𝛱, 𝑺) and its proëxistent left adjoint.
Hoyois showed that if𝑋ét is the (1-localic) étale∞-topos of a locally noetherian scheme
𝑋, then the profinite space𝛱∧∞(𝑋ét) coincides with the étale homotopy type𝛱ét,∧

∞ (𝑋) of
Mike Artin and Barry Mazur [40, Corollary 5.6].

If the étale fundamental group 𝜋ét1 is information-dense, then the étale homotopy
type 𝛱ét,∧

∞ must be even more so. Indeed, Alexander Schmidt and Jacob Stix [77, The-
orem 1.2] show that over a finitely generated field 𝑘 of characteristic 0, if 𝑋 and 𝑌 are
smooth, geometrically connected varieties that can be embedded as locally closed sub-
schemes of a product of hyperbolic curves, then the map

Isom𝑘(𝑋, 𝑌) → Isom𝐵𝐺𝑘(𝛱
ét,∧
∞ (𝑋),𝛱ét,∧

∞ (𝑌))

is a split injection with a natural retraction, where Isom𝐵𝐺𝑘 denotes the set of homotopy
classes of equivalences of profinite spaces over 𝐵𝐺𝑘.

Exodromy for topological spaces
A string of results has suggested the possibility that stratified spaces and constructible
sheavesmight bemodeled in a similarly combinatorial fashion. BobMacPherson proved

7



that constructible sheaves of sets on a (suitably nice) stratified topological space𝑋 over a
poset𝑃determine and are determined by a functor from the exit-path category𝛱(1,1)(𝑋; 𝑃)
of𝑋, whose objects are points of𝑋 andwhosemorphisms are stratified homotopy equiv-
alence classes of exit paths – paths from a stratum𝑋𝑝 to a stratum𝑋𝑞 for 𝑞 ≥ 𝑝. We call
this equivalence

𝐸𝑃 ∶ Sh≤0(𝑋)𝑃-constr ⥲ Fun(𝛱(1,1)(𝑋; 𝑃), Set)

between 𝑃-constructible sheaves of sets on 𝑋 and functors𝛱(1,1)(𝑋; 𝑃) → Set the exo-
dromy equivalence.1 Onenotes that𝛱(1,1)(𝑋; 𝑃) is a categorywith a conservative functor
to 𝑃 itself. Over each point 𝑝 ∈ 𝑃, the fibre of this functor over 𝑝 is the fundamental
groupoid𝛱1(𝑋𝑝) of the stratum𝑋𝑝.

David Treumann [83] then extendedMacPherson’s result to give an exodromy equiv-
alence between constructible stacks with functors from an exit-path 2-category of𝑋 val-
ued in groupoids. Lurie [HA, Appendix A] extended this further to give an exodromy
equivalence

𝐸𝑃 ∶ Sh(𝑋)𝑃-constr ⥲ 𝛱̃(∞,1)(𝑋; 𝑃) ≔ Fun(𝛱(∞,1)(𝑋; 𝑃), 𝑺)

between 𝑃-constructible sheaves of spaces on 𝑋 and functors from an exit-path cate-
gory 𝛱(∞,1)(𝑋; 𝑃). The objects are points of 𝑋, the morphisms are exit-paths, the 2-
morphisms are stratified homotopies, the 3-morphisms are stratified homotopies of ho-
motopies, etc., etc., ad infinitum. One notes that 𝛱(∞,1)(𝑋; 𝑃) is an∞-category with a
conservative functor to 𝑃 itself. Over each point 𝑝 ∈ 𝑃, the fibre of this functor is the
fundamental∞-groupoid𝛱∞(𝑋𝑝) of the stratum𝑋𝑝.

One is led to seek an analogue of the Kan–Quillen theorem that states that the for-
mation of the exit-path ∞-category is an equivalence of suitable homotopy theories
between stratified spaces and suitable∞-categories. A geometric form of this result was
proved by David Ayala, John Francis, and Nick Rozenblyum [6], who showed that the
exit-path∞-category construction is fully faithful from a homotopy theory of conically
smooth stratified spaces to∞-categories.

A still closer stratified analogue of the Kan–Quillen equivalence has now been pro-
vided by the simultaneous, work of three authors:2 Sylvain Douteau [22], StephenNand-
Lal and Jon Woolf [65], and the third-named author [29; 30]. These papers each take a
slightly different point of view, but for our purposes here, the salient point is this: the
functor𝛱(∞,1)(−; 𝑃) is an equivalence between the following homotopy theories:

→ topological spaces with a stratification over 𝑃 – in which a weak equivalence of
such is a weak equivalence on strata and (homotopy) links – and

→ ∞-categories with a conservative functor to 𝑃.
1ἔξω: outer; δρόμος: avenue.
2In his thesis [33], André Henriques conjectures that one should be able to define a model structure on
𝑃-stratified simplicial sets. In his later note [34] he defines a model structure on 𝑃-stratified simplicial sets
and relates it to a model structure on Fun(sd(𝑃)op, sSet). These model structures present a delocalisation of
the∞-category we’re interested in.
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We are thus entitled to refer to∞-categories with a conservative functor to a poset𝑃
as 𝑃-stratified spaces. This makes it possible to port some of the ideas of stratified homo-
topy theory to the study of schemes. Importantly, if 𝑆 is a spectral topological space (i.e.,
the underlying Zariski topological space 𝑋zar of a coherent3 scheme 𝑋, or equivalently
a profinite poset), then we are able to extend this description to define the homotopy
theory of 𝑆-stratified spaces.

Exodromy for schemes
In the present paper, we define 𝑃-stratified∞-topoi and more generally 𝑆-stratified∞-
topoi, and we study the constructible sheaves therein. For any 𝑆-stratified space 𝛱, the
∞-topos 𝛱̃ ≔ Fun(𝛱, 𝑺) admits a natural 𝑆-stratification.This defines a functor Str𝑆 →
StrTop∧∞,𝑆. Restricting to profinite stratified spaces, we obtain a fully faithful functor
Str∧𝜋,𝑆 ↪ StrTop∧∞,𝑆 and its left adjoint𝛱𝑆,∧(∞,1).

BTheorem (Theorem 11.1.7). For any 𝑆-stratified∞-topos𝑿, the unit𝑿 → 𝛱̃𝑆,∧(∞,1)(𝑿)
of the adjunction to profinite stratified spaces restricts to an equivalence

Fun(𝛱𝑆,∧(∞,1)(𝑿), 𝑺𝜋) ≃ 𝑿𝑆-constr

between the∞-category of functors valued in 𝜋-finite spaces and 𝑆-constructible sheaves
𝑿. We call this identification the exodromy equivalence for stratified∞-topoi.

We call the profinite∞-category𝛱𝑆,∧(∞,1)(𝑿) the 𝑆-stratified homotopy type of𝑿. This
is a refinement of the usual homotopy type of𝑿: the classifying profinite space of𝛱𝑆,∧(∞,1)(𝑿)
is precisely𝛱∧∞(𝑿).

Profinite stratified spaces admit Postnikov towers𝛱 →⋯→ ℎ2𝛱 → ℎ1𝛱 → ℎ0𝛱;
thus an 𝑆-stratified∞-topos𝑿 has attached fundamental profinite (𝑛, 1)-categories

𝛱𝑆,∧(𝑛,1)(𝑿) ≔ ℎ𝑛𝛱𝑆,∧(∞,1)(𝑿) .

Our interest in these refinements arose primarily due to the following example.

C Example. If 𝑋 is a coherent scheme, then we have the 1-localic∞-topos 𝑋ét, which
admits a natural𝑋zar-stratification, and so we obtain the profinite∞-category

𝛱ét,∧
(∞,1)(𝑋) ≔ 𝛱𝑋

zar,∧
(∞,1) (𝑋ét) ,

which we call the stratified étale homotopy type of𝑋.
For a finite ring 𝛬, the exodromy equivalence yields in particular

Fun(𝛱ét,∧
(∞,1)(𝑋),Perf (𝛬)) ≃ 𝑫b

constr(𝑋; 𝛬) .

Passing to suitable limits, we find that ℓ-adic constructible sheaves on 𝑋 ‘are’ ℓ-adic
representations of the stratified étale homotopy type of𝑋, in just the same way as ℓ-adic
local systems on𝑋 ‘are’ ℓ-adic representations of the étale homotopy type of𝑋.

3Following the Grothendieck school we use the term ‘coherent scheme’ synonymously with ‘quasicompact
quasiseparated scheme’ (0.6.1).

9



An important point is that the stratified étale homotopy type turns out to be 1-
truncated, so that 𝛱ét,∧

(∞,1)(𝑋) = 𝛱ét,∧
(1,1)(𝑋). For stratified 1-types, we are able to identify

them with 1-categories equipped with a suitable topology. Under this correspondence,
the stratified étale homotopy type agrees with the topological category Gal(𝑋) of points
of𝑋 that we introduced just before the statement of Theorem A.

Hochster Duality for higher topoi
The main novel step in our proof of Theorem A is that the whole étale∞-topos of any
coherent scheme can be completely recovered from the stratified étale homotopy type.
This is a generalisation of what we call Hochster Duality.

Melvin Hochster’s thesis [36; 37] identifies the category of profinite posets with the
category of spectral topological spaces – those topological spaces that underlie coherent
schemes. This functions as a simultaneous generalisation of Alexandroff Duality (which
identifies finite posets with finite topological spaces) and StoneDuality (which identifies
profinite sets with quasicompact and totally separated topological spaces).

Lurie has already extended Stone Duality to the context of higher topoi: he proves
that the functor that carries a profinite space𝛱 to the∞-topos 𝛱̃ is fully faithful, and its
essential image consists of bounded coherent∞-topoi in which the truncated coherent
objects coincide with the lisse sheaves [SAG, §E.3].We call these∞-topoi Stone∞-topoi.
(Lurie calls them profinite∞-topoi.)

In this paper, we prove the following:

D Theorem (∞-Categorical Hochster Duality; Theorem 10.3.1). The assignment that
carries a profinite stratified space𝜫 to the∞-topos 𝜫̃ is fully faithful, and its essential im-
age consists of bounded coherent∞-topoi in which the truncated coherent objects coincide
with the constructible sheaves.

We call these ∞-topoi spectral ∞-topoi (Definition 10.2.1). This is partially justified
by the fact that they are the natural higher categorical extension of Hochster’s spectral
topological spaces. Better still, we have the following.

E Example. Let𝑋 be a coherent scheme. Then the étale∞-topos𝑋ét is spectral.

Thus the étale∞-topos of a coherent scheme is of the form 𝜫̃ for some profinite∞-cat-
egory𝜫, which turns out in this case to be a 1-category.

Since one may identify the constructible sheaves on𝑋with the truncated and coher-
ent objects of𝑋ét, we deduce that in fact𝑋ét is equivalent to the∞-topos 𝛱̃ét,∧

(∞,1)(𝑋). In
other words, the stratified étale homotopy type of 𝑋 recovers the entire étale∞-topos
attached to𝑋.

Armed with this, Theorem A follows as soon as we know that our schemes can
be recovered from their étale ∞-topoi. On this score, in his letter to Gerd Faltings,
Grothendieck conjectured – andVladimir Voevodsky proved [85] – that the assignment
𝑋 ↦ 𝑋ét is a fully faithful functor from reduced, normal schemes of finite type over a
finitely generated field 𝑘 of characteristic 0 to∞-topoi with an action of the absolute Ga-
lois group 𝐺𝑘 and ‘admissible’ 𝐺𝑘-equivariant morphisms. Combined with our results
on the profinite stratified shape, we obtain our Theorem A.
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In effect, whereas the étale homotopy type of a scheme can only be hoped to be
a complete invariant only for certain varieties constructed iteratively from hyperbolic
curves, the addition of the natural stratification on the étale homotopy type turns it
into a complete invariant for all varieties. The stratified étale homotopy type identifies
reduced normal schemes over 𝑘with a subcategory of the category of profinite categories
with an action of 𝐺𝑘.

In characteristic 𝑝 and for more general arithmetic schemes, the presence of insep-
arable extensions forces us to give a more careful formulation of Grothendieck’s conjec-
ture (Conjecture 14.4.4), and both it and the analogue of Theorem A remain open.

Stratified Riemann Existence
If 𝑋 is a 𝑪-scheme of finite type, then the Riemann Existence Theorem amounts to an
equivalence between the étale homotopy type 𝛱ét,∧

∞ (𝑋) and the profinite completion
𝛱∧∞(𝑋an) of the homotopy type of the topological space 𝑋an of complex points of 𝑋
with its analytic topology [4, Theorem 12.9; 14, Proposition 4.12]. In the same vein, the
stratified Riemann Existence Theorem provides the following.

F Theorem (Stratified Riemann Existence; Proposition 13.8.3). Let 𝑋 be a 𝑪-scheme
of finite type, and 𝑋 → 𝑃 a finite constructible stratification. Then there is a natural
equivalence

𝛱ét,∧
∞ (𝑋; 𝑃) ≃ 𝛱∧∞(𝑋an; 𝑃) .

CombiningTheoremFwithTheoremA above, we find that if 𝑘 is a finitely generated
field of characteristic 0, then a normal 𝑘-variety can be reconstructed from the stratified
homotopy type of the topological space (𝑋×Spec 𝑘Spec 𝑘)an alongwith its action of𝐺𝑘. In
dimension 1, for example, a connected, smooth, and complete curve over 𝑘 is uniquely
specified by a genus 𝑔 and a suitable action of 𝐺𝑘 on a diagram of free groups whose
ranks depend on 𝑔 (see §14.5).

Technical overview
The first three parts of this paper reflect the three ingredients necessary to construct the
stratified étale homotopy type and to prove the central Hochster Duality Theorem for
higher categories (Theorem D=Theorem 10.3.1). The last part is then focused applying
this machinery to the étale∞-topoi of schemes.

The first ingredient is a small (and quite elementary) piece of abstract homotopy
theory in the study of stratified spaces and profinite stratified spaces. Most of this work
is relatively formal, but one important notion is that of a spatial décollage, which is a
presheaf on the subdivision of a poset satisfying a Segal condition. We prove that the
∞-category of stratified spaces is equivalent to that of spatial décollages via a nerve
construction. The upshot is that a stratified space can be recovered from its ‘unglued’
form4 – a collection of strata and links, suitably organised.

On the toposic side, one wants to be able to perform the same ungluing procedure,
so that one can recover an∞-topos 𝑿 from the data of a closed subtopos 𝒁, its open

4Whence the term ‘décollage’.
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complement𝑼, and the gluing information in the form of the deleted tubular neighbour-
hood 𝑾 of 𝒁 in 𝑼. This is the second major ingredient – gluing squares of ∞-topoi,
which are certain squares

𝑾 𝑼

𝒁 𝑿

𝑞∗

𝑝∗ 𝑗∗𝜎⟸
𝑖∗

of geometric morphisms with a noninvertible natural transformation 𝜎. In order to
make sense of this, there are three nontrivial tasks:

→ We must work – systematically and ab initio – with bounded coherent ∞-topoi.
This involves some care, particularly as these conditions are not stable under the
formation of recollements.

→ We must develop the higher categorical analogue of Pierre Deligne’s oriented fibre
product [45; 53; 69]. The tubular neighbourhood of 𝒁 in 𝑿 is the evanescent ∞-
topos𝒁×⃖𝑿𝑿, and the deleted tubular neighbourhood𝑾 is then the open subtopos
𝒁 ×⃖𝑿 𝑼 ⊆ 𝒁 ×⃖𝑿 𝑿.

→ Finally, and most crucially, we must prove a rather delicate Beck–Chevalley Theo-
rem, which ensures that the two gluing functors 𝑖∗𝑗∗ and 𝑝∗𝑞∗ agree, at least on
truncated objects.

We define stratified∞-topoi in a manner completely analogous to our definition of
stratified topological spaces, but our study of gluing squares nowpermits us to prove that
the∞-category of bounded coherent stratified∞-topoi are equivalent to a∞-category
of toposic décollages – i.e., presheaves of∞-topoi on the subdivision of a poset that satisfy
a kind of oriented Segal condition. This condition ensures that a string {𝑝0 ≤ ⋯ ≤ 𝑝𝑛} is
carried to an iterated oriented fibre product𝑿𝑝0 ×⃖𝑿⋯×⃖𝑿𝑿𝑝𝑛 of the strata. We may also
pass to profinite objects in the base, which permits us to contemplate stratified∞-topoi
over spectral topological spaces.

Among the bounded coherent stratified∞-topoi are those in which the strata are
Stone∞-topoi.These are the spectral∞-topoi.They turn out to agreewith those bounded
coherent stratified∞-topoi in which the truncated coherent objects are exactly the con-
structible sheaves – i.e., those sheaves that restrict to a lisse sheaf on any stratum. If𝜫 is
a profinite stratified space, then the stratified∞-topos 𝜫̃ is spectral in this sense. As in
Lurie’s∞-Categorical Stone Duality, there is a left adjoint to the functor𝜫 ↦ 𝜫̃, which
carries a stratified∞-topos to its stratified homotopy type.

Now the∞-CategoricalHochsterDualityTheorem–which provides an equivalence
between spectral∞-topoi with profinite stratified spaces – follows from a sequence of
three moves:

→ We reduce to the case of a finite poset 𝑃. This is formal.

→ We then show that the stratified homotopy type of a spectral∞-topos can be com-
puted by ungluing to the toposic décollage, forming the homotopy type objectwise
to get a spatial décollage, and then regluing to a profinite stratified space.

→ We then appeal to Lurie’s∞-Categorical Stone Duality Theorem.
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Open problems
There are a number of questions we have not answered in this paper. Here are just a few.

Question. Our work here leaves Conjecture 14.4.4 frustratingly open. In effect, it pre-
dicts that a large class of absolute schemes𝑋 (see Definition 14.4.1) can be reconstructed
from Gal(𝑋).

Question. We may ask whether one can recover an absolute scheme 𝑋 from the profi-
nite stratified space at a finite stage. That is, is there a finite constructible stratification
𝑋 → 𝑃 such that for any absolute scheme 𝑌, the map

Mor𝑘(𝑋, 𝑌) ≃ Map𝐵𝐺𝑘(𝛱
ét,∧
(∞,1)(𝑌),𝛱ét,∧

(∞,1)(𝑋)) → 𝜋0Map𝐵𝐺𝑘(𝛱
ét,∧
(∞,1)(𝑌),𝛱ét,∧

(∞,1)(𝑋; 𝑃))

is a bijection? (One might expect that it suffices to choose stratification in which the
strata in𝑋 are strongly hyperbolic Artin neighbourhoods; at this point, we do not know.)
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0 Terminology & notations
0.1 Set theoretic conventions
0.1.1. Recall that if 𝛿 is a strongly inaccessible cardinal (which we always assume to be
uncountable), then the set 𝑽𝛿 of all sets of rank strictly less than 𝛿 is a Grothendieck
universe of rank and cardinality 𝛿 [SGA 4i, Exposé I, Appendix]. Conversely, if 𝑽 is a
Grothendieck universe that contains an infinite cardinal, then𝑽 = 𝑽𝛿 for some strongly
inaccessible cardinal 𝛿.

In order to deal precisely and simply with set-theoretic problems arising from the
consideration of ‘large’ collections, we append to zfc the Axiom of Universes (au). This
asserts that any cardinal is dominated by a strongly inaccessible cardinal.

We write 𝛿0 for the smallest strongly inaccessible cardinal. Now au implies the exis-
tence of a hierarchy of strongly inaccessible cardinals

𝛿0 < 𝛿1 < 𝛿2 < ⋯ ,

in which for each ordinal 𝛼, the cardinal 𝛿𝛼 is the smallest strongly inaccessible cardinal
𝛿𝛼 that dominates 𝛿𝛽 for any 𝛽 < 𝛼.5

We certainly will not use the full strength of au; the existence of only 𝛿0 and 𝛿1
suffices for our work here. At the cost of some circumlocutions, one could even get away
with zfc alone.

0.1.2. We write 𝑵 for the poset of nonnegative integers. We write 𝑵∗ ≔ 𝑵 ∖ {0}, and
𝑵▹ ≔ 𝑵 ∪ {∞}.

0.2 Higher categories
0.2.1. Weuse the language and tools of higher category theory, particularly in themodel
of quasicategories, as defined by Michael Boardman and Rainer Vogt and developed by
André Joyal and Lurie. We will generally follow the terminological and notational con-
ventions of Lurie’s trilogy [HTT; HA; SAG]. In particular:

→ An∞-category here will always mean quasicategory.
5Thus 𝑽𝛿𝛼 models zfc plus the axiom ‘the set of strongly inaccessible cardinals is order-isomorphic to 𝛼’.
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→ A subcategory 𝐶′ of an∞-category 𝐶 is a simplicial subset that is stable under
composition in the strong sense, so that if 𝜎∶ 𝛥𝑛 → 𝐶 is an 𝑛-simplex of 𝐶, then
𝜎 factors through 𝐶′ ⊆ 𝐶 if and only if each of the edges 𝜎(𝛥{𝑖,𝑖+1}) does so.

→ An 𝑛-category here means a quasicategory with unique inner horn fillers in di-
mensions strictly greater than 𝑛.

→ Let 𝛿 be a strongly inaccessible cardinal. A set, group, simplicial set,∞-category,
ring, etc., will be said to be 𝛿-small6 if it equivalent (in whatever appropriate sense)
to one that lies in 𝑽𝛿. We abbreviate 𝛿0-small to small.

→ An∞-category𝐶 is said to be locally 𝛿-small if and only if, for any objects𝑥, 𝑦 ∈ 𝐶,
the mapping spaceMap𝐶(𝑥, 𝑦) is 𝛿-small. We abbreviate locally 𝛿0-small to locally
small.

→ Accessibility of∞-categories and functors and presentability of∞-categories will
always refer to accessibility and presentability with respect to some 𝛿0-small car-
dinal. Please observe that an accessible∞-category is always essentially 𝛿1-small
and locally 𝛿0-small.

→ We will use the terms∞-groupoid or space interchangeably for an∞-category in
which every morphism is invertible. If 𝐶 is an∞-category, the largest∞-group-
oid 𝜄𝐶 ⊆ 𝐶 contained in 𝐶 will be called the interior of 𝐶.

→ Let 𝛿 be a strongly inaccessible cardinal. Then we write 𝑺𝛿 for the∞-category of
𝛿-small spaces andCat∞,𝛿 for the∞-category of 𝛿-small∞-categories. In partic-
ular, we shall write 𝑺 and Cat∞ for 𝑺𝛿0 and Cat∞,𝛿0 , respectively.

→ Let𝐶 be an∞-category and𝑊 ⊆ 𝐶1 a set ofmorphisms of𝐶.Thenwewrite𝑊−1𝐶
for the result of inverting the morphisms of 𝑊. If 𝛿 is an inaccessible cardinal
for which 𝐶 is 𝛿-small, then 𝑊−1𝐶 is 𝛿-small as well. This ∞-category comes
equipped with a functor 𝐶 → 𝑊−1𝐶 that, for any∞-category 𝐷, induces a fully
faithful functor

Fun(𝑊−1𝐶,𝐷) ↪ Fun(𝐶,𝐷)
that identifies Fun(𝑊−1𝐶,𝐷) with the full subcategory spanned by those func-
tors𝐶 → 𝐷 that carry the morphisms of𝑊 to equivalences in𝐷. One can (rather
inexplicitly) describe𝑊−1𝐶 by forming the model category of (𝛿-small) marked
simplicial sets (over 𝛥0), and forming a fibrant replacement of the marked simpli-
cial set (𝐶,𝑊).

0.2.2. For any 𝑛 ∈ 𝑵▹, writeCat𝑛 ⊆ Cat∞ for the full subcategory spanned by those∞-
categories that are equivalent to 𝑛-categories; that is, an∞-category𝐶 lies inCat𝑛 if and
only if for any 𝑥, 𝑦 ∈ 𝐶, the∞-groupoidMap𝐶(𝑥, 𝑦) is equivalent to an (𝑛−1)-groupoid.
In particular, Cat0 ≃ poSet, the 1-category of partially ordered sets.

The inclusion Cat𝑛 ⊆ Cat∞ admits a left adjoint ℎ𝑛 [76]. If 𝐶 is a∞-category, then
the unit 𝐶 → ℎ𝑛𝐶 exhibits ℎ𝑛𝐶 as the 𝑛-categorical truncation, so that the objects of

6The adverb ‘essentially’ is often deployed in this situation.
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ℎ𝑛𝐶 are exactly those of 𝐶 and whose mapping spaces are defined by the condition that
the map

Map𝐶(𝑥, 𝑦) → Mapℎ𝑛𝐶(𝑥, 𝑦)

exhibits Mapℎ𝑛𝐶(𝑥, 𝑦) as the (𝑛 − 1)-truncation of Map𝐶(𝑥, 𝑦). The 1-categorical trun-
cation ℎ1𝐶 is also known as the homotopy category of 𝐶. The 0-categorical truncation
is equivalent to the poset whose elements are the equivalence classes of objects of 𝐶 in
which 𝑥 ≤ 𝑦 if and only if there exists a morphism 𝑥 → 𝑦.

0.3 Proöbjects in higher categories
0.3.1. We say that a 𝛿0-small∞-category 𝐴 is inverse if and only if its opposite 𝐴op is
filtered. Hence an inverse system in an∞-category𝐶 is a functor𝐴 → 𝐶 from an inverse
∞-category 𝐴, and an inverse limit is a limit of an inverse system.

For any accessible∞-category𝐶 that admits all finite limits, a proöbject of𝐶 is an left
exact accessible functor𝐶 → 𝑺. We define Pro(𝐶) ⊆ Fun(𝐶, 𝑺)op for the full subcategory
spanned by the proöbjects. We have a Yoneda embedding

よ ∶ 𝐶 ↪ Pro(𝐶) ,

composition along which defines an equivalence

Funinv(Pro(𝐶), 𝐷) ⥲ Fun(𝐶,𝐷)

for any∞-category𝐷 with all 𝛿0-small inverse limits, where Funinv denotes the∞-cat-
egory of functors that preserve 𝛿0-small inverse limits.

Recall that an essentially 𝛿0-small∞-category 𝐶 is idempotent complete if and only
if 𝐶 is accessible, and every functor from 𝐶 is accessible. Hence in this case, the forma-
tion of proöbjects is dual to the formation of indobjects in the sense that Pro(𝐶)op ≃
Ind(𝐶op).

If𝑋∶ 𝐴 → 𝐶 is an inverse system, then its limit in Pro(𝐶) is the functor

𝑌 ↦ colim
𝛼∈𝐴op

Map𝐶(𝑋𝛼, 𝑌) ,

we will abuse notation and denote this proöbject by 𝑋 = {𝑋𝛼}𝛼∈𝐴. Any proöbject of 𝐶
can be exhibited in this manner, and for proöbjects 𝑋 = {𝑋𝛼}𝛼∈𝐴 and 𝑌 = {𝑌𝛽}𝛽∈𝐵 we
obtain the familiar formula

MapPro(𝐶)(𝑋, 𝑌) ≃ lim𝛽∈𝐵 colim𝛼∈𝐴op Map𝐶(𝑋𝛼, 𝑌𝛽) .

Wewill thus often speak of objects of Pro(𝐶) as if theywere inverse systems. In particular,
a proöbject 𝑋 is said to be constant if and only if it lies in the essential image of よ;
equivalently,𝑋 is constant if and only if, as a functor 𝐶 → 𝑺, it preserves inverse limits.

0.3.2. Let 𝛿 ≥ 𝛿0 be an inaccessible cardinal, 𝐶 a locally 𝛿-small ∞-category that
admits all 𝛿0-small limits, 𝐷 an accessible ∞-category that admits finite limits, and
𝑢∶ 𝐷 → 𝐶 a left exact functor. The functor 𝑢 will not in general admit a left adjoint,
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but passage to proöbjects often repairs this. Indeed, one may extend 𝑢 to a (unique)
functor 𝑈∶ Pro(𝐷) → 𝐶 that preserves inverse limits, and in the other direction, one
may consider the composite

𝐹 ≔ 𝑢∗ ∘よ ∶ 𝐶 → Fun(𝐶, 𝑺𝜅)op → Fun(𝐷, 𝑺𝜅)op

of the Yoneda embedding よ with the restriction along 𝑢. The functor 𝐹 carries an ob-
ject 𝑐 ∈ 𝐶 to the assignment 𝑑 ↦ Map𝐶(𝑐, 𝑢(𝑑)). We have to make two set-theoretic
assumptions:

→ Assume that for any object 𝑐 ∈ 𝐶 and any object 𝑑 ∈ 𝐷, the space Map𝐶(𝑐, 𝑢(𝑑))
is 𝛿0-small.

→ Assume that for any object 𝑐 ∈ 𝐶, there exists a regular cardinal 𝜏 < 𝛿0 such that
for any 𝜏-filtered diagram 𝑑∗ ∶ 𝐴 → 𝐷, the natural map

colim
𝛼∈𝐴

Map𝐶(𝑐, 𝑢(𝑑𝛼)) → Map𝐶(𝑐, colim𝛼∈𝐴 𝑢(𝑑𝛼))

is an equivalence.

In this case, the functor 𝐹 lands in Pro(𝐷), and 𝐹 is left adjoint to 𝑈. We shall call 𝐹 the
proëxistent left adjoint to 𝑢. If 𝑢 already admits a left adjoint 𝑓, then 𝐹 lands in 𝐷 and
coincides with 𝑓.

0.4 Recollements
0.4.1. Given functors 𝐹∶ 𝑋 → 𝑍 and 𝐺∶ 𝑌 → 𝑍 between∞-categories, we write

𝑋 ↓𝑍 𝑌 ≔ 𝑋 ×Fun({0},𝑍) Fun(𝛥1, 𝑍) ×Fun({1},𝑍) 𝑌 .

This is the oriented fibre product of∞-categories.

0.4.2. Let 𝑋 and 𝑌 be essentially 𝛿0-small∞-categories, let 𝑍 be a locally 𝛿0-small∞-
category, and let 𝐹∶ 𝑋 → 𝑍 and 𝐺∶ 𝑌 → 𝑍 be functors. Write 𝑍′ ⊂ 𝑍 for the full
subcategory spanned by those objects in the image of 𝐹 or the image of 𝐺. Then 𝑍′
is essentially 𝛿0-small and the oriented fibre product 𝑋 ↓𝑍 𝑌 is equivalent to 𝑋 ↓𝑍′ 𝑌,
whence𝑋 ↓𝑍 𝑌 is essentially 𝛿0-small.

0.4.3 (see [HA, §A.8]). Let𝐶 be an∞-category that admits finite limits. Then two func-
tors 𝑖∗ ∶ 𝐶𝑍 → 𝐶 and 𝑗∗ ∶ 𝐶𝑈 → 𝐶 exhibit 𝐶 as a recollement of 𝐶𝑍 and 𝐶𝑈 if and only
if the following conditions are satisfied.

→ Both 𝑖∗ and 𝑗∗ are fully faithful.

→ There are left exact left adjoints 𝑖∗ and 𝑗∗ to the functors 𝑖∗ and 𝑗∗.

→ The functor 𝑗∗𝑖∗ is constant at the terminal object of 𝐶𝑈.

→ The functor (𝑖∗, 𝑗∗) ∶ 𝐶 → 𝐶𝑍 × 𝐶𝑈 is conservative.
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We refer to the∞-category 𝐶𝑍 as the closed subcategory, the∞-category𝐶𝑈 as the open
subcategory, and the functor 𝑖∗𝑗∗ ∶ 𝐶𝑈 → 𝐶𝑍 as the gluing functor.

If𝐶 is the recollement of∞-categories𝐶𝑍 and𝐶𝑈, then𝐶𝑍 is canonically equivalent
to the kernel of 𝑗∗ (i.e., the full subcategory spanned by those objects 𝑥 such that 𝑗∗(𝑥) ≃
1𝐶𝑈).

If𝐶𝑍 and𝐶𝑈 are any∞-categories with finite limits, and if 𝜙∶ 𝐶𝑈 → 𝐶𝑍 is left exact,
then we write

𝐶𝑍 ∪⃖
𝜙 𝐶𝑈 ≔ 𝐶𝑍 ↓𝐶𝑍 𝐶𝑈 .

The projections 𝑖∗ ∶ 𝐶𝑍 ∪⃖
𝜙 𝐶𝑈 → 𝐶𝑍 and 𝑗∗ ∶ 𝐶𝑍 ∪⃖

𝜙 𝐶𝑈 → 𝐶𝑈 admit right adjoints
𝑖∗ ∶ 𝐶𝑍 → 𝐶𝑍 ∪⃖

𝜙 𝐶𝑈 and 𝑗∗ ∶ 𝐶𝑈 → 𝐶𝑍 ∪⃖
𝜙 𝐶𝑈 that together exhibit 𝐶𝑍 ∪⃖

𝜙 𝐶𝑈 as a
recollement of 𝐶𝑍 and 𝐶𝑈. Furthermore, any recollement is of this form, where 𝜙 is the
gluing functor.

If𝐶𝑍 contains an initial object, then 𝑗∗ admits a further left adjoint 𝑗!, so in this case
we may also write 𝑗! ≔ 𝑗∗. If, moreover, 𝐶 contains a zero object (whence so do 𝐶𝑍 and
𝐶𝑈), then 𝑖∗ admits a further right adjoint 𝑖!, so in this case we may also write 𝑖! ≔ 𝑖∗.

0.4.4. Let 𝐶 be an∞-category with finite limits and let 𝑖∗ ∶ 𝐶𝑍 ↪ 𝐶 and 𝑗∗ ∶ 𝐶𝑈 ↪ 𝐶
be two functors which exhibit 𝐶 as a recollement of 𝐶𝑍 and 𝐶𝑈 Then for any integer
𝑛 ≥ −2, since the left exact functor (𝑖∗, 𝑗∗) ∶ 𝐶 → 𝐶𝑍 × 𝐶𝑈 is conservative, a morphism
𝑓 of 𝐶 is 𝑛-truncated if and only if 𝑖∗(𝑓) and 𝑗∗(𝑓) are both 𝑛-truncated.

0.5 Relative adjunctions
0.5.1. Given a commutative triangle of∞-categories

𝐶 𝐷

𝐸
𝑝 𝑞

𝐺

where 𝑝 and 𝑞 are isofibrations, we say that 𝐺 admits a left adjoint relative to 𝐸 if the
following condition holds:

→ There exists a functor 𝐹∶ 𝐶 → 𝐷 and a natural transformation 𝜂∶ id𝐶 → 𝐺𝐹
which exhibits 𝐹 as a left adjoint to 𝐺 such that 𝑝𝜂∶ 𝑝 → 𝑝𝐺𝐹 ≃ 𝑞𝐹 is an equiva-
lence in Fun(𝐶, 𝐸).

In this situation, given a functor 𝐸′ → 𝐸, define 𝐶𝐸′ ≔ 𝐶 ×𝐸 𝐸′, 𝐷𝐸′ ≔ 𝐷 ×𝐸 𝐸′,
and write 𝐺𝐸′ ∶ 𝐷𝐸′ → 𝐶𝐸′ and 𝐹𝐸′ ∶ 𝐶𝐸′ → 𝐷𝐸′ for the induced functors on pullbacks.
Then the induced natural transformation id𝐶𝐸′ → 𝐺𝐸′𝐹𝐸′ exhibits 𝐹𝐸′ as a left adjoint
to 𝐺𝐸′ relative to 𝐸′. See [HA, Proposition 7.3.2.5].

If 𝑝 and 𝑞 are cartesian fibrations, 𝐺 admits a left adjoint relative to 𝐸 if and only if
the following conditions hold:

→ For every object 𝑒 ∈ 𝐸, the induced functor 𝐺𝑒 ∶ 𝐷𝑒 → 𝐶𝑒 admits a left adjoint.

→ The functor 𝐺 carries 𝑝-cartesian morphisms in 𝐷 to 𝑞-cartesian morphisms in
𝐶.
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See [HA, Proposition 7.3.2.6]. In this case, if 𝑓∶ 𝑎 → 𝑏 is a morphism of 𝐸, then one
has a natural equivalence

𝑓∗𝐺𝑏 ≃ 𝐺𝑎𝑓∗ .
Dually, if 𝑝 and 𝑞 are cocartesian fibrations, 𝐺 admits a left adjoint relative to 𝐸 if

and only if the following (somewhat more complicated) conditions hold:

→ For every object 𝑒 ∈ 𝐸, the induced functor 𝐺𝑒 ∶ 𝐷𝑒 → 𝐶𝑒 admits a left adjoint 𝐹𝑒.

→ Let 𝑐 ∈ 𝐶 and𝛼∶ 𝑒 → 𝑒′ be amorphismof 𝑒where 𝑒 ≃ 𝑝(𝑐). Let𝛼∶ 𝐹𝑒(𝑐) → 𝑑 be a
𝑞-cocartesian morphism in𝐷 lying over 𝛼, and let 𝛽∶ 𝑐 → 𝐺(𝑑) be the composite
𝛽 ≔ 𝐺(𝛼̃) ∘ 𝜂(𝑐). Choose a factorisation of 𝛽 as

𝛽∶ 𝑐 𝑐′ 𝐺(𝑑) ,𝛽′ 𝛽″

where 𝛽′ is a 𝑝-cocartesianmorphism lifting 𝛼 and 𝛽″ is a morphism in𝐶𝑒′ .Then
𝛽″ induces an equivalence 𝐹𝑒′(𝑐′) → 𝑑 in the∞-category𝐷𝑒′ .

See [HA, Proposition 7.3.2.11]. In this case, if 𝑓∶ 𝑎 → 𝑏 is a morphism of 𝐸, then one
has a natural equivalence

𝐺𝑏𝑓! ≃ 𝑓!𝐺𝑎 .

0.6 Schemes
0.6.1. Following the Grothendieck school [SGA 4ii, Exposé VI, Exemples 1.22; SGA
4iii, Exposé XVII, 0.12; 45; 69], we say that scheme 𝑋 is coherent if and only if 𝑋 is
quasicompact and quasiseparated.
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Part I

Stratified spaces
1 Aide-mémoire on the topologyof posets&profinite posets
In this section we review the topologies on posets, and stratifications of topological
spaces by posets.We also recallHochster’sTheoremclassifying spectral topological spaces
in terms of proöbjects in finite posets (Theorem 1.3.4).

1.1 Alexandroff Duality
First we start with topologies on posets (and, more generally preorders).

1.1.1 Definition. If 𝑃 is a preorder (which we shall always assume to be 𝛿0-small), then
we endow 𝑃with the Alexandroff topology, in which a subset𝑈 ⊆ 𝑃 is open if and only if
𝑈 is a cosieve (i.e., if and only if, for any points 𝑝, 𝑞 ∈ 𝑃with 𝑝 ≤ 𝑞, if 𝑝 ∈ 𝑈 then 𝑞 ∈ 𝑈),
and a subset 𝑍 ⊆ 𝑃 is closed if and only if 𝑍 is a sieve (i.e., if and only if, for any points
𝑝, 𝑞 ∈ 𝑃 with 𝑝 ≤ 𝑞, if 𝑞 ∈ 𝑍 then 𝑝 ∈ 𝑍). A subset 𝐴 ⊆ 𝑃 is locally closed if and only if
𝐴 is an interval (i.e., if and only if, for any points 𝑝, 𝑞, 𝑟 ∈ 𝑃 with 𝑝 ≤ 𝑞 ≤ 𝑟, if 𝑝, 𝑟 ∈ 𝐴
then 𝑞 ∈ 𝐴).

In the other direction, if 𝑋 is a topological space, then the preorder on 𝑋 in which
𝑥 ≤ 𝑦 if and only if 𝑥 ∈ {𝑦} is called the specialisation preorder.

Alexandroff topologies admit a well-known characterisation.

1.1.2 Proposition. The following are equivalent for a topological space𝑋.

→ The space 𝑋 is finitely generated; that is, a subset 𝑈 ⊆ 𝑋 is open if, for any finite
topological space 𝐴 and any continuous map 𝑓∶ 𝐴 → 𝑋, the inverse image 𝑓−1(𝑈)
is open.

→ Any union of closed subsets of𝑋 is again closed.

→ The topology on 𝑋 coincides with the Alexandroff topology attached to the speciali-
sation preorder on𝑋.

1.1.3 (Alexandroff Duality). The formation 𝐴 of the Alexandroff topology and the for-
mation 𝑆 of the specialisation preorder are therefore inverse equivalences between the
category of preorders and that of finitely generated topological spaces. In particular, 𝐴
and 𝑆 restrict to an equivalence between the category of finite preorders and that of finite
topological spaces.

The functors 𝐴 and 𝑆 also restrict to an equivalence between:

→ the category of posets and that ofKolmogorofffinitely generated topological spaces,

→ the category of noetherian preorders (i.e., those for which every nonempty subset
contains amaximal element) and that of quasi-sober finitely generated topological
spaces, and thus

20



→ the category of noetherian posets and that of sober finitely generated topological
spaces.

1.1.4 Notation. Let 𝑃 be a preorder. For any subset𝑊 ⊆ 𝑃, we write 𝑃≥𝑊 for the cosieve
generated by𝑊, which is the smallest open neighbourhood of𝑊. Dually, we write 𝑃≤𝑊
for the sieve generated by𝑊, which is the closure of𝑊.

We call the sets of the form 𝑃≥𝑝 for 𝑝 ∈ 𝑃 the principal open sets, and we call the sets
of the form 𝑃≤𝑝 the principal ideals.

Similarly, we write 𝑃>𝑝 ≔ 𝑃≥𝑝 ∖ {𝑝} and 𝑃<𝑝 ≔ 𝑃≤𝑝 ∖ {𝑝}.

1.1.5. A poset is quasicompact if and only if its set of minimal elements is finite and
limit-cofinal. A monotone map 𝑓∶ 𝑄 → 𝑃 is quasicompact if and only if, for any 𝑝 ∈ 𝑃,
the poset 𝑓−1(𝑃≥𝑝) is quasicompact.

1.1.6 Notation. For a poset 𝑃, recall that sd(𝑃) denotes the nerve of the poset of strings
in 𝑃 – i.e., finite, nonempty, totally ordered subsets 𝛴 ⊆ 𝑃 – ordered by inclusion. One
has the natural forgetful functor sd(𝑃) → 𝜟.

If 𝛴 ⊆ 𝑃 is a string, then a closed subset 𝑍 ⊆ 𝛴 is again a string, and the inclusion is
denoted 𝑖𝑍⊆𝛴 (or simply 𝑖 if 𝑍 and 𝛴 are clear from the context). Dually, an open subset
𝑈 ⊆ 𝛴 is also a string, and the inclusion is denoted 𝑗𝑈⊆𝛴 (or again simply 𝑗 if 𝑈 and 𝑆
are clear from the context).

In more general situations, we will generally write 𝑒𝑊⊆𝛴 ∶ 𝑊 ↪ 𝛴 for an inclusion
𝑊 ⊆ 𝛴 that is not known to be be either closed or open.

1.2 Stratifications of topological spaces
The theory of stratified topological spaces can now be neatly organized in terms of topo-
logical spaces equipped with a continuous map to a poset in the Alexandroff topology.

1.2.1 Definition. A stratification of a topological space 𝑋 is poset 𝑃 and a continuous
map 𝑓∶ 𝑋 → 𝑃. For any point 𝑝 ∈ 𝑃, we write

𝑋≥𝑝 ≔ 𝑓−1(𝑃≥𝑝) ,
𝑋>𝑝 ≔ 𝑓−1(𝑃>𝑝) ,
𝑋≤𝑝 ≔ 𝑓−1(𝑃≤𝑝) ,
𝑋<𝑝 ≔ 𝑓−1(𝑃<𝑝) ,
𝑋𝑝 ≔ 𝑋≥𝑝 ∩ 𝑋≤𝑝 .

The subspaces 𝑋≥𝑝 and 𝑋>𝑝 are open in 𝑋, and 𝑋≤𝑝 and 𝑋<𝑝 are closed in 𝑋. The sub-
space𝑋𝑝 ⊆ 𝑋, which is locally closed, is called the 𝑝-th stratum.

We say that the stratification 𝑓∶ 𝑋 → 𝑃 is nondegenerate if each stratum 𝑋𝑝 is
nonempty, and for any 𝑝, 𝑞 ∈ 𝑃, if 𝑝 ≤ 𝑞, then 𝑋𝑝 ⊆ 𝑋𝑞. We say that it is connective if it
is nondegenerate, and each stratum𝑋𝑝 is connected.

We say that a stratification is finite or noetherian if and only if its base poset is so.
We say that the stratification 𝑓∶ 𝑋 → 𝑃 is constructible if and only if, for any 𝑝 ∈ 𝑃,
the open subset 𝑋≥𝑝 ⊆ 𝑋 is retrocompact – i.e., its intersection with any quasicompact
open 𝑉 ⊆ 𝑋 is again quasicompact.
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1.3 Hochster duality
The functor𝐴 can also be extended to profinite posets – i.e., proöbjects in the category of
finite posets. In order to study stratifications on schemes, this turns out to be convenient.

1.3.1 Notation. We write the poSet for 1-category of posets, and poSet fin for the 1-
category of finite posets. Passing to proöbjects, we obtain the 1-category Pro(poSet) of
proposets and the full subcategory Pro(poSet fin) of proöbjects in the category of finite
posets – which we call profinite posets.

1.3.2 Definition. For any topological space 𝑋, we write FC(𝑋) for the 1-category of
finite, nondegenerate, constructible stratifications𝑋 → 𝑃. Please observe that FC(𝑋) is
an inverse 1-category that is (equivalent to) a poset.

A topological space 𝑆 is said to be spectral7 if and only if 𝑆 is the limit of its finite,
nondegenerate, constructible stratifications; that is, if and only if

𝑆 ≃ lim
𝑃∈FC(𝑆)
𝑃

in the 1-category of topological spaces.

1.3.3. Theformation of theAlexandroff topology extends to an equivalence of 1-categories
𝐴∶ Pro(poSet fin) ⥲ TSpcspec, where TSpcspec is the 1-category of spectral topological
spaces and quasicompact continuousmaps.Wewill therefore fail to distinguish between
a spectral topological space and its corresponding profinite poset.

1.3.4Theorem (Hochster Duality [36; 37]). The following are equivalent for a topological
space 𝑆.

→ The space 𝑆 is spectral.

→ The space 𝑆 is sober, quasicompact, and quasiseparated; additionally, the set of qua-
sicompact open subsets forms a base for the topology of 𝑆.

→ The space 𝑆 is homeomorphic to Spec𝑅 for some ring 𝑅.

→ The space 𝑆 is homeomorphic to the underlying Zariski topological space 𝑌zar of
some coherent scheme 𝑌.

1.3.5. On one hand, AlexandroffDuality characterises posets as finitely generated topo-
logical spaces; on the other, Stone Duality characterises profinite sets as Stone spaces –
totally separated quasicompact topological spaces. Hochster duality provides a common

7Others call such topological spaces coherent; see for example [SAG, A.1; 51, Chapter III §3.4 & p. 78]. We
use Hochster’s algebro-geometric terminology [36; 37].
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extension of each of these forms of duality. The situation is summarised in the cube

Set fin TSpc fin,disc

Pro(Set fin) TSpcStone

poSet fin TSpc fin

Pro(poSet fin) TSpcspec ,

∼

∼

∼

∼

where the horizontal functors marked ‘∼’ are equivalences of 1-categories.
One of our main technical results here – the∞-Categorical Hochster Duality The-

orem (Theorem D=Theorem 10.3.1) – will be an extension of this square of dualities
to one in which the 1-category of finite sets is replaced with the∞-category of 𝜋-finite
spaces. Part of this extension is already established in the literature: Lurie proves [SAG,
§E.3] an ∞-categorical form of Stone Duality, which identifies the ∞-category 𝑺∧𝜋 of
profinite spaces with the∞-category of what we call Stone∞-topoi.8

1.4 Profinite stratifications
The the theory of stratifications also works well for profinite stratifications.

1.4.1 Definition. A profinite stratification of a topological space 𝑋 is a spectral topo-
logical space 𝑆 and a continuous map 𝑓∶ 𝑋 → 𝑆. We say that 𝑓 is constructible if and
only if, for any quasicompact open subset 𝑈 ⊆ 𝑆, the inverse image 𝑓−1(𝑈) ⊆ 𝑋 is
retrocompact.

1.4.2. A profinite stratification with base 𝑆 is the same as a compatible family of strati-
fications with base 𝑃 for each nondegenerate, finite, constructible stratification 𝑆 → 𝑃.

2 The homotopy theory of stratified spaces
In this sectionwe develop the homotopy theory of stratified spaces as∞-categories with
a conservative functor to a poset.

2.1 Stratified spaces as conservative functors
The equivalence between the homotopy theory of topological spaces and that of simpli-
cial sets justifies (at least partially) the treatment of the∞-category of Kan complexes as
‘the’ homotopy theory of spaces. Analogously, the results of Nand-Lal and Woolf [65]
and the third-named author [29] furnish an equivalence between the homotopy theory
of stratified topological spaces and that of∞-categories with a conservative functor to
a poset. We therefore feel entitled to give the following definition.

8Lurie calls these profinite∞-topoi.
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2.1.1Definition. Wedefine the∞-category Str as the full subcategory of Fun(𝛥1,Cat∞)
spanned by those functors𝑓∶ 𝛱 → 𝑃 in which 𝑃 is a poset and𝑓 is a conservative func-
tor. We regard the 1-category poSet of posets (always 𝛿0-small) and monotonic maps as
a full subcategory of Cat∞; indeed one has poSet ≃ Cat0.

The fibre Str𝑃 of the target functor 𝑡 ∶ Str → poSet over a poset 𝑃 is the underlying
∞-category of the third-named author’s Joyal–Kan model category sSet/𝑃, whose un-
derlying∞-category is equivalent to the∞-category of 𝑃-stratified topological spaces
[29]. Consequently, we shall call an object of Str a stratified space and more particularly
an object of Str𝑃 a 𝑃-stratified space.

2.1.2. Please observe that if𝛱 and𝛱′ are two 𝑃-stratified spaces, then the∞-category
Fun𝑃(𝛱,𝛱′) of functors 𝛱 → 𝛱′ over 𝑃 is an∞-groupoid. We regard this space of
functors as the stratified mapping space.

2.2 Strata & links
2.2.1 Definition. If 𝑓∶ 𝛱 → 𝑃 is a stratified space, then for every point 𝑝 ∈ 𝑃, the
space

𝛱𝑝 = Map𝑃({𝑝},𝛱)
will be called the 𝑝-th stratum of𝛱, and for every pair of points 𝑝, 𝑞 ∈ 𝑃with 𝑝 ≤ 𝑞, the
space

𝑁𝑃(𝛱){𝑝 ≤ 𝑞} ≔ Map𝑃({𝑝 ≤ 𝑞},𝛱)
will be called the link9 from the 𝑝-th stratum to the 𝑞-th stratum.

Please observe that the link comes equipped with source and target maps

(𝑠, 𝑡) ∶ 𝑁𝑃(𝛱){𝑝 ≤ 𝑞} → 𝛱𝑝 × 𝛱𝑞 ,

the fibres of which over a point (𝑥, 𝑦) is precisely the space Map𝛱(𝑥, 𝑦). When 𝑝 = 𝑞,
each of 𝑠 and 𝑡 is an equivalence, whence (𝑠, 𝑡) is equivalent to the diagonal𝛱𝑝 → 𝛱𝑝 ×
𝛱𝑝.

2.2.2. A morphism 𝛱′ → 𝛱 of Str𝑃 is an equivalence if and only if, for every pair
of points 𝑝, 𝑞 ∈ 𝑃 with 𝑝 ≤ 𝑞, the map on links 𝑁𝑃(𝛱′){𝑝 ≤ 𝑞} → 𝑁𝑃(𝛱){𝑝 ≤ 𝑞} is
an equivalence (whence in particular, when 𝑝 = 𝑞, the map on strata 𝛱′𝑝 → 𝛱𝑝 is an
equivalence).

2.3 Repairing functors that are not conservative
If 𝑓∶ 𝑃 → 𝑄 is a morphism of posets, then the functor Cat∞,/𝑃 → Cat∞,/𝑄 given
by postcomposition with 𝑓 does not generally send 𝑃-stratified spaces to 𝑄-stratified
spaces. However, this can be easily repaired.

9Our link corresponds towhat FrankQuinn and others called the homotopy link or holink.The significance
of our chosen notation will become clear in Construction 4.2.1.

24



2.3.1Construction. Let𝑃 be a poset.The forgetful functor Str𝑃 → Cat∞,/𝑃 admits a left
adjoint. Indeed, if 𝛱 is an∞-category, and 𝑓∶ 𝛱 → 𝑃 is any functor (not necessarily
conservative), we may formally invert those morphisms of𝛱 that are sent to identities
in 𝑃 as follows. We form

Ex𝑃(𝛱) ≔ Ex(𝛱) ×Ex(𝑃) 𝑃 ,
so that an 𝑛-simplex of Ex𝑃(𝛱) is a commutative square

sd(𝛥𝑛) 𝛱

𝛥𝑛 𝑃
𝜆 𝑓

where 𝜆 is the last vertex map. Now 𝜆 induces a functor 𝛱 → Ex𝑃(𝛱), and so we are
entitled to form the colimit

Ex∞𝑃 (𝛱) ≔ colim
𝑛∈𝑵

Ex𝑛𝑃(𝛱) ≅ Ex∞(𝛱) ×Ex∞(𝑃) 𝑃 .

Since 𝑓 is an inner fibration (as its target is the nerve of an ordinary category), so is
Ex∞(𝑓), whence so is the projection Ex∞𝑃 (𝛱) → 𝑃; it is also conservative, since the fibre
over a point 𝑝 ∈ 𝑃 is the∞-groupoid Ex∞(𝛱𝑝). The functor𝛱 → Ex∞𝑃 (𝛱), natural in
𝛱, is the unit of the desired adjunction.

2.3.2 Proposition. The forgetful functor 𝑡 ∶ Str→ poSet is a bicartesian fibration.

Proof. Let 𝑃 and 𝑄 be posets, and let 𝑓∶ 𝑃 → 𝑄 be a monotonic map; if 𝑞∶ 𝛯 → 𝑄
is a 𝑄-stratified space, then one obtains a 𝑃-stratified space 𝑓∗(𝑞) ∶ 𝛯 ×𝑃 𝑄 → 𝑄. The
resulting square

𝛯 ×𝑃 𝑄 𝛯

𝑃 𝑄
𝑓∗(𝑞) 𝑞

𝑓

is a cartesian edge lying over 𝑓. In the other direction, let 𝑝∶ 𝛱 → 𝑃 be a 𝑃-stratified
space. Then the composite 𝑓 ∘ 𝑝 is not in general conservative if 𝑓 is not a monomor-
phism, but one may formally invert those morphisms of𝛱 that are sent to identities by
𝑓 ∘ 𝑝. The square

𝛱 Ex∞𝑄 (𝛱)

𝑃 𝑄

𝑝 𝑓!(𝑝)

𝑓

is a cocartesian morphism of Str over 𝑓.

2.3.3. To compute the limit of a diagram 𝛼 ↦ [𝛱𝛼 → 𝑃𝛼] in Str, we first form the limit
𝑃 ≔ lim𝛼 𝑃𝛼; then pulling back along the various projections 𝑝𝛼 ∶ 𝑃 → 𝑃𝛼, we obtain
the diagram 𝛼 ↦ 𝑝∗𝛼𝛱𝛼 of 𝑃-stratified spaces. We then form the limit𝛱 ≔ lim𝛼𝛱𝛼 in
Str𝑃. If the diagram is connected, then the limit lim𝛼𝛱𝛼 is computed in Cat∞.
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2.4 The stratified Postnikov tower
In this subsection we investigate a Postnikov tower for stratified spaces. Importantly,
the correct notion of ‘𝑛-truncatedness’ is not the notion of 𝑛-truncatedness interntal
to the∞-category Str𝑃 (in the sense of [HTT, §5.5.6]), but rather corresponds to the
categorical level of the stratified space.

2.4.1 Definition. Let 𝑃 be a poset and 𝛱 a 𝑃-stratified space. Then we obtain a tower
of 𝑃-stratified spaces

𝛱 →⋯→ ℎ3𝛱 → ℎ2𝛱 → ℎ1𝛱 → ℎ0𝛱 → 𝑃 ,

called the stratified Postnikov tower.
In particular, please observe that ℎ0𝛱 → 𝑃 is a monotonic map of posets.

2.4.2. If 𝑃 = {0}, then the stratified Postnikov tower coincides with the usual Postnikov
tower of spaces.

2.4.3. The following are equivalent for a poset 𝑃, a 𝑃-stratified space 𝑓∶ 𝛱 → 𝑃, and a
nonnegative integer 𝑛 ∈ 𝑵:

→ the∞-category𝛱 is equivalent to an 𝑛-category;

→ the natural functor𝛱 → ℎ𝑛𝛱 is an equivalence;

→ for any objects 𝑥, 𝑦 ∈ 𝛱, the space Map𝛱(𝑥, 𝑦) is (𝑛 − 1)-truncated;

→ for any pair of points 𝑝, 𝑞 ∈ 𝑃 with 𝑝 ≤ 𝑞, the map

(𝑠, 𝑡) ∶ 𝑁𝑃(𝛱){𝑝 ≤ 𝑞} → 𝛱𝑝 × 𝛱𝑞

is (𝑛 − 1)-truncated (whence in particular, when 𝑝 = 𝑞, the stratum 𝛱𝑝 is 𝑛-
truncated).

2.4.4 Definition. Let 𝑃 be a poset and 𝑛 ∈ 𝑵. We say that a 𝑃-stratified space 𝛱 is 𝑛-
truncated if𝛱 satisfies the equivalent conditions of (2.4.3). We write Str𝑃,≤𝑛 ⊂ Str𝑃 for
the full subcategory spanned by the 𝑛-truncated 𝑃-stratified spaces.

We caution that an 𝑛-truncated 𝑃-stratified space is generally not the same thing as
an 𝑛-truncated object of the∞-category Str𝑃 in the sense of Lurie [HTT, Definition
5.5.6.1]. Nor is it the same thing as a 𝑃-stratified space whose strata are 𝑛-truncated;
truncatedness in our sense involves a condition on the links as well.

2.4.5. Dually, the following are equivalent for a poset 𝑃, a 𝑃-stratified space 𝑓∶ 𝛱 → 𝑃,
and a nonnegative integer 𝑛 ∈ 𝑵:

→ the natural functor ℎ𝑛𝛱 → 𝑃 is an equivalence;

→ for any objects 𝑥, 𝑦 ∈ 𝛱 such that 𝑓(𝑥) ≤ 𝑓(𝑦), the space Map𝛱(𝑥, 𝑦) is 𝑛-
connective;
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→ for any pair of points 𝑝, 𝑞 ∈ 𝑃 with 𝑝 ≤ 𝑞, the map

(𝑠, 𝑡) ∶ 𝑁𝑃(𝛱){𝑝 ≤ 𝑞} → 𝛱𝑝 × 𝛱𝑞

is 𝑛-connective (whence in particular, when 𝑝 = 𝑞, the stratum 𝛱𝑝 is (𝑛 + 1)-
connective).

2.4.6 Definition. Let 𝑃 be a poset and 𝑛 ∈ 𝑵. We say that a 𝑃-stratified space 𝛱 is 𝑛-
connective if𝛱 satisfies the equivalent conditions of (2.4.5). We write Str𝑃,≥𝑛 ⊂ Str𝑃 for
the full subcategory spanned by the 𝑛-connective 𝑃-stratified spaces.

2.4.7 Definition. We say that a 1-category is layered10 if and only if every endomor-
phism is an isomorphism. We say that an ∞-category 𝛱 is layered if and only if its
homotopy category ℎ1(𝛱) is a layered category. This holds if and only if the natural
functor𝛱 → ℎ0(𝛱) is conservative. Thus a layered∞-category𝛱 is naturally an ℎ0(𝛱)-
stratified space.

We write Lay∞ for the full subcategory of Cat∞ spanned by the layered ∞-cate-
gories.

2.4.8. Theassignment [𝛱 → 𝑃] ↦ 𝛱 defines a functor Str→ Lay∞ with a fully faithful
left adjoint that carries 𝛱 to the ℎ0(𝛱)-stratified space 𝛱. Consequently, we obtain an
identification

Lay∞ ≃ Str≥0 ,
where Str≥0 ⊂ Str is the full subcategory spanned by the 0-connective stratified spaces.

2.5 Finite stratified spaces
We conclude this section by identifying a good finiteness property on stratified spaces.

2.5.1 Recollection ([SAG, Definition E.0.7.8]). An∞-groupoid𝐾 is said to be 𝜋-finite
if and only if the following conditions are satisfied.

→ The set 𝜋0(𝐾) is finite.

→ For any point 𝑥 ∈ 𝐾 and any 𝑖 ≥ 1, the group 𝜋𝑖(𝐾, 𝑥) is finite.

→ The∞-groupoid 𝐾 is equivalent to an 𝑛-groupoid for some 𝑛 ∈ 𝑵.

We write 𝑺𝜋 ⊂ 𝑺 for the full subcategory spanned by the 𝜋-finite∞-groupoids.
We caution that a 𝜋-finite∞-groupoid is not the same thing as what is normally

called a finite space – one obtained via finite colimits from 𝛥0. In fact, the overlap be-
tween these two classes of spaces is essentially trivial. In this paper, we shall never refer
to finite spaces in this latter sense.

2.5.2 Definition. We say that a stratified space 𝛱 → 𝑃 is 𝜋-finite if and only if the
following conditions are satisfied.

→ The poset 𝑃 is finite.
10or EI, as they are more usually called
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→ For any point 𝑝 ∈ 𝑃, the set 𝜋0(𝛱𝑝) is finite.

→ For any morphism 𝜙∶ 𝑥 → 𝑦 of𝛱, and every 𝑖 ≥ 1, the group 𝜋𝑖(Map𝛱(𝑥, 𝑦), 𝜙)
is finite.

→ The∞-category𝛱 is equivalent to an 𝑛-category for some 𝑛 ∈ 𝑵.

In particular, a nondegenerate stratified space 𝛱 → 𝑃 is 𝜋-finite if and only if 𝛱 has
finitely many objects up to equivalence and is locally 𝜋-finite in the sense that each map-
ping space Map𝛱(𝑥, 𝑦) is 𝜋-finite.

We write Str𝜋 ⊂ Str for the full subcategory spanned by the 𝜋-finite stratified spaces,
and for any finite poset 𝑃, we write Str𝜋,𝑃 ⊂ Str𝑃 for the full subcategory spanned by the
𝜋-finite 𝑃-stratified spaces.

2.5.3. The forgetful functor 𝑡 ∶ Str𝜋 → poSet fin is a cartesian fibration, but is not a
cocartesian fibration because pullback doesn’t admit a left adjoint in the finite realm.
However, the pullback does preserve finite limits, and there is a proëxistent left adjoint,
which we will discuss in the next section.

2.5.4 Lemma. The full subcategory Str𝜋 ⊂ Str is an accessible subcategory that is closed
under finite limits.

Proof. Finite limits of finite posets are finite, pullbacks of finite stratified spaces along
maps of finite posets are finite, and limits of locally 𝜋-finite ∞-categories are locally
𝜋-finite. Finally, Str𝜋 is essentially 𝛿0-small and idempotent complete.

In light of (0.3.2), this entitles us to speak of profinite stratified spaces, to which we now
turn.

3 Profinite stratified spaces
In this section we set up the basics of proöbjects in 𝜋-finite stratified spaces – profinite
stratified spaces.

3.1 Stratified prospaces over proposets
3.1.1 Definition. We call objects of the the∞-category Pro(Str) stratified prospaces; the
forgetful functor 𝑡 ∶ Str → poSet from stratified spaces to posets extends to a forgetful
functor

𝑡 ∶ Pro(Str) → Pro(poSet) .
The fibre Pro(Str)𝑃 over a poset 𝑃, regarded as a constant proposet, can be identified
with the∞-category Pro(Str𝑃) of 𝑃-stratified prospaces – i.e., of proöbjects in Str𝑃.

Similary, if 𝑷 is a proposet, then the fibre Pro(Str)𝑷 of 𝑡 over 𝑷 will be called the
∞-category of 𝑷-stratified prospaces.

3.1.2. A stratified prospace can be exhibited as an inverse system {𝛱𝛼 → 𝑃𝛼}𝛼∈𝐴 of
stratified spaces. The functor 𝑡 carries this stratified prospace to the proposet {𝑃𝛼}𝛼∈𝐴.
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3.1.3 Example. Our primary interest is when the base is a spectral topological space 𝑆
regarded as a profinite poset, whence we obtain the∞-category Pro(Str)𝑆 of 𝑆-stratified
prospaces. Still, in order to reason effectively with these, it is occasionally necessary to
deal with more general stratified prospaces.

3.1.4. Please observe that the forgetful functor 𝑡 ∶ Pro(Str) → Pro(poSet) is a cartesian
fibration. Indeed, if {𝑃′𝛼}𝛼∈𝐴 → {𝑃𝛼}𝛼∈𝐴 is a morphism of proposets, and if {𝛱𝛼 →
𝑃𝛼}𝛼∈𝐴 is a stratified prospace, then one may form {𝛱𝛼 ×𝑃𝛼 𝑃

′
𝛼}𝛼∈𝐴.

3.1.5 Construction. Let 𝜂∶ 𝑷 → 𝑄 a morphism of proposets where 𝑄 is constant, so
that 𝜂 ∈ 𝑷(𝑄). For a 𝑷-stratified prospace𝜫, there exists a 𝑡-cocartesian edge𝜫 → 𝜂!𝜫
covering 𝜂; indeed, for any 𝑄-stratified space𝑋, one has

(𝜂!𝜫)(𝑋) ≃ 𝜫(𝑋) ×𝑷(𝑄) {𝜂} .

Equivalently, if we exhibit 𝜫 as an inverse system {𝜫𝛼 → 𝑷𝛼}𝛼∈𝐴 in Str, then the 𝑄-
stratified prospace 𝜂!𝜫 can be exhibited as the inverse system 𝐴 ×poSet poSet/𝑄 → Str𝑄
given by

(𝛼, 𝑷𝛼 → 𝑄) ↦ Ex∞𝑄 (𝜫𝛼) .
Note in particular that if 𝑷 and𝜫 are constant, then so is 𝜂!𝜫.

In the∞-category Pro(Str), the inverse system poSet𝑷/ → Str given by 𝜂 ↦ 𝜂!𝜫 is
identified with𝜫 itself.

Now if 𝜃∶ 𝑷′ → 𝑷 is anymorphismof proposets and if𝜫′ is a𝑷′-stratified prospace,
then we may form the inverse system poSet𝑷/ → Str given by 𝜂 ↦ (𝜂 ∘ 𝜃)!𝜫′, which
defines a proposet 𝜃!𝜫′, and as this notation suggests, the morphism 𝜫′ → 𝜃!𝜫′ is a
𝑡-cocartesian edge over 𝜃. Thus 𝑡 ∶ Pro(Str) → Pro(poSet) is a cocartesian fibration.

We thus combine the previous two points:

3.1.6 Proposition. The forgetful functor 𝑡 ∶ Pro(Str) → Pro(poSet) is a bicartesian fibra-
tion.

3.2 Profinite stratified spaces
We now turn to proöbjects in 𝜋-finite stratified spaces.

3.2.1 Definition. A profinite stratified space is a proöbject of the∞-category Str𝜋. We
write Str∧𝜋 ≔ Pro(Str𝜋). The forgetful functor [𝜫 → 𝑆] ↦ 𝑆 is a cartesian fibration

𝑡 ∶ Str∧𝜋 → TSpcspec ≃ Pro(poSet fin) ,

and for any spectral topological space 𝑆, we denote by Str∧𝜋,𝑆 the fibre over 𝑆. This is the
∞-category of profinite 𝑆-stratified spaces.

The inclusion Str𝜋 ↪ Str extends to a fully faithful functor Str∧𝜋 ↪ Pro(Str), which
admits a left adjoint𝜫 ↦ 𝜫∧𝜋 given by restriction. We call the profinite stratified space
𝜫∧𝜋 the profinite completion of𝜫.
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3.2.2. The profinite completion functor𝜫 ↦ 𝜫∧𝜋 is not itself a relative left adjunction
over Pro(poSet); however, the inclusion Str𝜋 ↪ Str induces a fully faithful functor

Str∧𝜋 ↪ Pro(Str) ×Pro(poSet) TSpcspec ,

and profinite completion does define a relative left adjoint over TSpcspec. In particular, if
𝑆 is a spectral topological space and𝜫 is an 𝑆-stratified prospace, then𝜫∧𝜋 is a profinite
𝑆-stratified space, and the morphism𝜫 → 𝜫∧𝜋 lies over 𝑆.

3.2.3 Construction. Let 𝜃∶ 𝑆′ → 𝑆 be a quasicompact continuous map of spectral
topological spaces, and let 𝜫′ → 𝑆′ be a profinite 𝑆′-stratified space. Then following
Construction 3.1.5, we obtain an 𝑆-stratified prospace 𝜃!𝜫′ → 𝑆, and so we may form
its profinite completion (𝜃!𝜫′)∧𝜋 → 𝑆.Themap𝜫′ → (𝜃!𝜫′)∧𝜋 is thus a cocartesian edge
over 𝜃 for the forgetful functor 𝑡 ∶ Str∧𝜋 → TSpcspec.

We thus obtain:

3.2.4 Proposition. The forgetful functor 𝑡 ∶ Str∧𝜋 → TSpcspec is a bicartesian fibration.

3.2.5 Proposition. Let 𝑆 be a spectral topological space. Then the natural functor

Str∧𝜋,𝑆 → lim
𝑃∈FC(𝑆)

Str∧𝜋,𝑃

is an equivalence.

Proof. The formation of the limit in Str∧𝜋 is an inverse.

4 Spatial décollages
In this section we develop an approach to stratified spaces in the style of complete Se-
gal spaces. Precisely, we show that a 𝑃-stratified space can be ‘glued together’ from the
diagram of its strata, links, and higher-order links (Theorem 4.2.4).

4.1 Complete Segal spaces & spatial décollages
4.1.1 Recollection. An∞-category can be modeled as a simplicial space. In effect, if 𝐶
is an∞-category, then one may extract a functor 𝑁(𝐶)∶ 𝜟op → 𝑺 in which 𝑁(𝐶)𝑚 is
the∞-groupoid of functors 𝛥𝑚 → 𝐶 (the ‘moduli space of sequences of arrows in 𝐶’).
The simplicial space𝑁(𝐶) is what Charles Rezk [71] called a complete Segal space – i.e.,
a functor𝐷∶ 𝜟op → 𝑺 such that the following conditions obtain.

→ For any𝑚 ∈ 𝑵∗, the natural map

𝐷𝑚 → 𝐷{0 ≤ 1} ×𝐷{1}𝐷{1 ≤ 2} ×𝐷{2}⋯ ×𝐷{𝑚−1}𝐷{𝑚 − 1 ≤ 𝑚}

is an equivalence.
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→ If𝐸 denotes the unique contractible 1-groupoid with two objects, then the natural
map

𝐷0 → Map(𝐸,𝐷)
is an equivalence.

Joyal and Tierney [52] showed that the assignment 𝐶 ↦ 𝑁(𝐶) is an equivalence
between the∞-category Cat∞ of∞-categories and the∞-category CSS of complete
Segal spaces.

We can isolate the∞-groupoids in CSS: an∞-category 𝐶 is an∞-groupoid if and
only if𝑁(𝐶)∶ 𝜟op → 𝑺 is left Kan extended from {0} ⊂ 𝜟op.

We shall demonstrate that the homotopy theory of stratified spaces admits an anal-
ogous description.

4.1.2 Notation. For a poset 𝑃, write sdop(𝑃) ≔ sd(𝑃)op.

4.1.3 Definition. Let 𝑃 be a poset. A functor 𝐷∶ sdop(𝑃) → 𝑺 is said to be a spatial
décollage (over 𝑃) if and only if, for any string {𝑝0 ≤ ⋯ ≤ 𝑝𝑚} ⊆ 𝑃, the map

𝐷{𝑝0 ≤ ⋯ ≤ 𝑝𝑚} → 𝐷{𝑝0 ≤ 𝑝1} ×𝐷{𝑝1}
𝐷{𝑝1 ≤ 𝑝2} ×𝐷{𝑝2}

⋯ ×
𝐷{𝑝𝑚−1}
𝐷{𝑝𝑚−1 ≤ 𝑝𝑚}

is an equivalence. We write

Déc𝑃(𝑺) ⊆ Fun(sdop(𝑃), 𝑺)

for the full subcategory spanned by the spatial décollages.

4.1.4 Construction. Write 𝐽 for the following 1-category. The objects are pairs (𝑃, 𝛴)
consisting of a poset 𝑃 and a string 𝛴 ⊆ 𝑃. A morphism (𝑃, 𝛴) → (𝑄, 𝑇) is a monotonic
map 𝑓∶ 𝑃 → 𝑄 such that 𝑇 ⊆ 𝑓(𝛴). The assignment (𝑃, 𝛴) ↦ 𝑃 is a cocartesian
fibration 𝐽 → poSet whose fibre over a poset 𝑃 is the poset sdop(𝑃).

We write
PairpoSet(𝐽, 𝑺)

for the simplicial set over poSet defined by the following universal property: for any
simplicial set 𝐾 over poSet, one demands a bijection

MorsSet/poSet(𝐾,PairpoSet(𝐽, 𝑺)) ≅ MorsSet(𝐾 ×poSet 𝐽, 𝑺) ,

natural in 𝐾. By [HTT, Corollary 3.2.2.13], the functor

PairpoSet(𝐽, 𝑺) → poSet

is a cartesian fibration whose fibre over a poset 𝑃 is the ∞-category Fun(sdop(𝑃), 𝑺).
Now let

Déc(𝑺) ⊂ PairpoSet(𝐽, 𝑺)
denote the full subcategory spanned by the pairs (𝑃,𝐷) in which𝐷 is a spatial décollage.
SinceDéc(𝑺) contains all the cartesian edges, the functorDéc(𝑺) → poSet is a cartesian
fibration.
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4.2 The nerve of a stratified space
We shall now show that the ∞-category Str of stratified spaces and the ∞-category
Déc(𝑺) of décollages are equivalent over poSet.

4.2.1 Construction. Let 𝑃 be a poset. Any string contained in 𝑃 can be regarded as
a 𝑃-stratified space via the inclusion map. This assignment is a functor sd(𝑃) → Str𝑃.
Now for any 𝑃-stratified space 𝛱, let us define 𝑁𝑃(𝛱)∶ sdop(𝑃) → 𝑺 to be the functor
given by the assignment𝛴 ↦ Map𝑃(𝛴,𝛱). (This is themoduli space of sections over𝛴.)
An equivalence of 𝑃-stratified spaces is carried to an objectwise equivalence of functors;
hence this defines a functor

𝑁𝑃 ∶ Str𝑃 → Fun(sdop(𝑃), 𝑺) .

Furthermore, the assignment [𝛱 → 𝑃] ↦ (𝑃,𝑁𝑃(𝛱)) defines a functor

𝑁∶ Str→ PairpoSet(𝐽, 𝑺) .

4.2.2 Example. For any poset 𝑃, any 𝑃-stratified space𝛱, and any points 𝑝, 𝑞 ∈ 𝑃 such
that 𝑝 ≤ 𝑞, the space

𝑁𝑃(𝛱){𝑝 ≤ 𝑞} ≃ Map𝑃({𝑝 ≤ 𝑞},𝛱)
is the link between the 𝑝-th and 𝑞-th strata of𝛱.

Let us demonstrate that the functor𝑁 lands in the full subcategory

Déc(𝑺) ⊂ PairpoSet(𝐽, 𝑺) .

4.2.3 Lemma. For any poset𝑃 and any𝑃-stratified space𝛱, the functor𝑁𝑃(𝛱) is a spatial
décollage.

Proof. In Cat∞,/𝑃, for any string {𝑝0 ≤ ⋯ ≤ 𝑝𝑛} ⊆ 𝑃, one has an equivalence

{𝑝0 ≤ 𝑝1} ∪{𝑝1}⋯∪{𝑝𝑛−1} {𝑝𝑛−1 ≤ 𝑝𝑛} ⥲ {𝑝0 ≤ ⋯ ≤ 𝑝𝑛} ,

which induces an equivalence

Map𝑃({𝑝0 ≤ ⋯ ≤ 𝑝𝑛}, 𝛱) ⥲ Map𝑃({𝑝0 ≤ 𝑝1}, 𝛱) ×𝛱𝑝1
⋯ ×
𝛱𝑝𝑛−1

Map𝑃({𝑝𝑛−1 ≤ 𝑝𝑛}, 𝛱) ,

as desired.

4.2.4 Theorem. The functor 𝑁∶ Str → Déc(𝑺) is an equivalence of∞-categories over
poSet.

Proof. Let 𝑃 be a poset. The Joyal–Tierney theorem [52] implies that the functor

𝑁∶ Cat∞,/𝑃 → Fun(𝜟op, 𝑺)/𝑁𝑃 ≃ Fun(𝜟
op
/𝑃, 𝑺)

is fully faithful, and the essential image CSS/𝑁𝑃 consists of those functors 𝜟op/𝑃 → 𝑺 that
satisfy both the Segal condition and the completeness condition. At the same time, the
fully faithful functor 𝑖 ∶ sd(𝑃) ↪ 𝜟/𝑃 induces, via left Kan extension, a fully faithful
functor Déc𝑃(𝑺) ↪ CSS/𝑁𝑃 whose essential image consists of those complete Segal
spaces 𝐶 → 𝑁𝑃 such that for any 𝑝 ∈ 𝑃, the complete Segal space 𝐶𝑝 is an∞-group-
oid.
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4.2.5. The nerve𝑁 restricts to an equivalence of∞-categories Str𝜋 ⥲ Déc(𝑺𝜋), where
Déc(𝑺𝜋) denotes the full subcategory of Déc(𝑺) spanned by those pairs (𝑃,𝐷) where 𝑃
is a finite poset and𝐷 is a spatial décollage on 𝑃 whose values are all 𝜋-finite.

4.3 Profinite spatial décollages
We now extend the theory of décollages to proöbjects.

4.3.1. We extend𝑁 to proöbjects to obtain an equivalence of∞-categories

𝑁∶ Pro(Str) ⥲ Pro(Déc(𝑺))

over Pro(poSet).
4.3.2 Recollection. We regard 𝑺∧𝜋 ≔ Pro(𝑺𝜋) as a full subcategory of the∞-category
Pro(𝑺). Precomposition with the inclusion 𝑺𝜋 ↪ 𝑺 is profinite completion 𝑋 ↦ 𝑋∧𝜋 ,
which exhibits 𝑺∧𝜋 as a localisation of Pro(𝑺).

There are two monoidal structures on Pro(𝑺) one may contemplate. On one hand,
one has the cartesian symmetric monoidal structure. On the other, the composition of
two prospaces is again a prospace, whence we obtain a monoidal structure

(𝑋, 𝑌) ↦ 𝑋 ∘ 𝑌 .

The identity functor, which is the unit for ∘, is terminal in Pro(𝑺), and there certainly is
a morphism 𝑋 ∘ 𝑌 → 𝑋 × 𝑌 that is natural in 𝑋 and 𝑌, but it is not an equivalence in
general.

However, on the∞-category 𝑺∧𝜋 of profinite∞-groupoids, we can consider the profi-
nite completion (𝑋, 𝑌) ↦ (𝑋 ∘ 𝑌)∧𝜋, and we claim that the morphism

(𝑋 ∘ 𝑌)∧𝜋 → 𝑋 × 𝑌

is an equivalence. Indeed, we claim that the value of the natural transformation𝑋 × 𝑌 →
𝑋 ∘ 𝑌 on any truncated space 𝐾 is an equivalence.11 Exhibit 𝑋 and 𝑌, respectively, as
inverse systems {𝑋𝛼}𝛼∈𝐴 and {𝑌𝛽}𝛽∈𝐵 of 𝜋-finite∞-groupoids. For each 𝛼 ∈ 𝐴, the∞-
groupoid𝑋𝛼 can be exhibited as a simplicial set with only finitely many nondegenerate
simplices of each dimension, whence the functor corepresented by𝑋𝛼 preserves filtered
colimits of uniformly truncated spaces. Since 𝐾 is truncated, the filtered diagram 𝛽 ↦
Map(𝑌𝛽, 𝐾) is uniformly truncated. Hence

(𝑋 × 𝑌)(𝐾) ≃ colim
𝛼∈𝐴op

Map(𝑋𝛼, colim𝛽∈𝐵op Map(𝑌𝛽, 𝐾))

≃ colim
(𝛼,𝛽)∈𝐴op×𝐵op

Map(𝑋𝛼 × 𝑌𝛽, 𝐾) ≃ (𝑋 ∘ 𝑌)(𝐾) ,

as desired.
This is helpful for describing fibre products in 𝑺∧𝜋 aswell: if𝑝∶ 𝑋 → 𝑍 and 𝑞∶ 𝑌 → 𝑍

are twomorphisms of profinite∞-groupoids, then onemay identify the pullback𝑋×𝑍𝑌
of 𝑝 along 𝑞 with a cobar construction:

𝑋 ×𝑍 𝑌 ≃ lim
𝑚∈𝜟
(𝑋 ∘ 𝑍∘𝑚 ∘ 𝑌)∧𝜋 .

11We are grateful to Jacob Lurie for this observation.
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4.3.3 Construction. For any finite poset 𝑃, write Déc𝑃(𝑺∧𝜋) for the full subcategory of
Fun(sdop(𝑃), 𝑺∧𝜋) spanned by those functors

𝐷∶ sdop(𝑃) → 𝑺∧𝜋

such that for any string {𝑝0 ≤ ⋯ ≤ 𝑝𝑛} ⊆ 𝑃, the natural map

𝐷{𝑝0 ≤ ⋯ ≤ 𝑝𝑛} → lim
𝑚∈𝜟
(𝐷{𝑝0 ≤ 𝑝1} ∘ 𝐷{𝑝1}∘𝑚 ∘ ⋯ ∘ 𝐷{𝑝𝑛−1}∘𝑚 ∘ 𝐷{𝑝𝑛−1 ≤ 𝑝𝑛})

∧
𝜋

is an equivalence of profinite spaces.We call objects ofDéc𝑃(𝑺∧𝜋) profinite décollages over
𝑃.

Combining the equivalence

Pro(Fun(sdop(𝑃), 𝑺𝜋)) ⥲ Fun(sdop(𝑃), 𝑺∧𝜋)

furnished by [HTT, Proposition 5.3.5.15] with the equivalences (4.2.5) and (4.3.1), we
obtain equivalences of∞-categories

Str∧𝜋,𝑃 ⥲ Pro(Déc𝑃(𝑺𝜋)) ⥲ Déc𝑃(𝑺∧𝜋) .
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Part II

Elements of higher topos theory
In this part we develop the higher-toposic tools that we’ll need to state and prove our∞-
Categorical Hochster Duality Theorem (Theorem D=Theorem 10.3.1). In §5 we recall a
number of important results from higher topos theory and develop the basic calculi of
(bounded) coherent∞-topoi, (bounded)∞-pretopoi, and shape theory that we will use
heavily in the remainder of the text. Section 6 develops the basics of Deligne’s oriented
fibre product, which plays a fundamental role in our approach to stratified higher topos
theory in Part III. In §7 we develop the basic theory of local∞-topoi, which for∞-topoi
play the role of local rings. Reduction to the local case plays a key role in our proof of the
fundamental basechange theorem for oriented fibre products (Theorem 8.1.4), to which
§8 is dedicated.

5 Aide-mémoire on higher topoi
In this section we recall a number of important results from higher topos theory (mostly
from Jacob Lurie’s [SAG, Appendices A & E]), and we develop some basic results that
we’ll use throughout the rest of the paper.This section is heremostly for ease of reference,
and we make no pretence to originality.

5.1 Higher topoi
We begin by setting our basic notational conventions for higher topoi.

5.1.1 Notation. We use here the theory of 𝑛-topoi for 𝑛 ∈ 𝑵▹; see [HTT, Chapter 6].We
writeTop𝑛 ⊂ Cat∞,𝛿1 for the subcategory of 𝛿1-small 𝑛-topoi and geometricmorphisms.
All of the examples in this paper will have 𝑛 ∈ {0, 1,∞}.

For any 𝛿0-small∞-category 𝐶, we write 𝑷(𝐶) ≔ Fun(𝐶op, 𝑺) for the∞-topos of
presheaves of spaces on 𝐶.

5.1.2 Example. Recall that 0-topoi are locales (which are essentially 𝛿0-small) [HTT,
Proposition 6.4.2.5], and 1-topoi are topoi in the classical sense of Grothendieck [HTT,
Remark 6.4.1.3].

5.1.3 Example. Let 𝑚, 𝑛 ∈ 𝑵▹ with 𝑚 ≤ 𝑛. By an 𝑚-site, we mean a 𝛿0-small 𝑚-
category 𝑋 equipped with a Grothendieck topology 𝜏. Attached to this 𝑚-site is the
𝑛-topos Sh𝜏,≤(𝑛−1)(𝑋) of sheaves of 𝛿0-small (𝑛 − 1)-groupoids on𝑋.

Not all ∞-topoi are of the form Sh𝜏(𝑋) for some ∞-site 𝑋; however, if 𝑛 ∈ 𝑵,
then every 𝑛-topos is of the form Sh𝜏,≤(𝑛−1)(𝑋) for some 𝑛-site (𝑋, 𝜏) [HTT, Theorem
6.4.1.5(1)].

5.1.4 Example. For any topological space 𝑊, denote by 𝑊̃ the 0-localic ∞-topos of
sheaves of (𝛿0-small) spaces on𝑊.
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5.1.5 Notation. The ∞-topos 𝑺 is terminal in Top∞. For any ∞-topos 𝑿, we write
𝛤𝑿,∗ or 𝛤∗ for the essentially unique geometric morphism 𝑿 → 𝑺; the functor 𝛤∗ is
corepresented by the terminal object 1𝑿 ∈ 𝑿. A point of 𝑿 is a geometric morphism
𝑥∗ ∶ 𝑺 → 𝑿; we may also write 𝑥 for this copy of 𝑺, regarded as lying over𝑿 via 𝑥∗.

5.1.6 Recollection. Let 𝑿 and 𝒀 be∞-topoi. A geometric morphism 𝑗∗ ∶ 𝑿 → 𝒀 is
étale if 𝑗∗ admits a further left adjoint 𝑗! ∶ 𝑿 → 𝒀 that exhibits 𝑿 as the slice∞-topos
𝒀/𝑗!(1𝑿). By [HTT, Corollary 6.3.5.6], the functor

Fun∗(𝒁,𝑿) → Fun∗(𝒁, 𝒀)

is a right fibration whose fibre over a geometric morphism𝑓∗ ∶ 𝒁 → 𝒀 is the (essentially
𝛿0-small) Kan complex Map𝑿(1𝑿, 𝑓∗𝑗!(1𝑿)).

5.1.7 Notation. Let 𝑿 and 𝒀 be two 𝑛-topoi for some 𝑛 ∈ 𝑵▹. We write Fun∗(𝑿, 𝒀) ⊆
Fun(𝑿, 𝒀) for the full subcategory spanned by the geometric morphisms. We note that
Fun∗(𝑿, 𝒀) is accessible [HTT, Proposition 6.3.1.13].Wewrite Fun∗(𝒀,𝑿) ⊆ Fun(𝒀,𝑿)
for the full subcategory spanned by those functors that are left exact left adjoints, so that
Fun∗(𝒀,𝑿) ≃ Fun∗(𝑿, 𝒀)op.

5.1.8. If𝑿 and𝒀 are∞-topoi, the product𝑿×𝒀 in Top∞ is not the product of∞-cate-
gories; rather, it can be identified with the tensor product of presentable∞-categories.12

Similarly, if 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 are geometric morphisms, then the pull-
back 𝑿 ×𝒁 𝒀 in Top∞ exists [HTT, Proposition 6.3.4.6], but it is not the pullback of
∞-categories.

Finally, there is an oriented fibre product of∞-topoi– which we will study in detail
in Section 6 – which also does not coincide with the oriented fibre product of∞-cat-
egories. We will therefore endeavour to indicate clearly when a product, pullback, or
oriented fibre product is meant to be formed in Top∞ or some Cat∞,𝜅.

We repeatedly make use of the fact that inverse limits in Top∞ are computed in
Cat∞,𝛿1 .

5.1.9 Theorem ([HTT, Theorem 6.3.3.1]). The forgetful functor Top∞ → Cat∞,𝛿1 pre-
serves inverse limits.

5.2 Boundedness
We now turn to the first of two finiteness conditions that we impose on almost all of the
∞-topoi we consider in this paper.

5.2.1 Notation. If 𝑚, 𝑛 ∈ 𝑵▹ with 𝑚 < 𝑛, then passage to (𝑚 − 1)-truncated objects is
a functor

𝜏≤𝑚−1 ∶ Top𝑛 → Top𝑚 .

In particular, when 𝑚 = 0, we write Open for 𝜏≤−1, and we call a (−1)-truncated
object of an 𝑛-topos𝑿 an open in𝑿.

12For this reason, Lurie writes𝑿 ⊗ 𝒀 for the product in Top∞.
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For any∞-topos𝑿, write

𝑿<∞ ≔ colim
𝑛∈𝑵
𝜏≤𝑛𝑿 ⊆ 𝑿

for the full subcategory spanned by the truncated objects.

5.2.2 Definition. If 𝑚, 𝑛 ∈ 𝑵▹ with 𝑚 < 𝑛, then the functor 𝜏≤𝑚−1 ∶ Top𝑛 → Top𝑚
admits a fully faithful right adjoint. Write Top𝑚𝑛 ⊆ Top𝑛 for the essential image of this
functor; this consists of those 𝑛-topoi𝑿 such that, for every 𝑛-topos 𝒀, the functor

Fun∗(𝒀,𝑿) → Fun∗(𝜏≤𝑚−1𝒀, 𝜏≤𝑚−1𝑿)

is an equivalence. We call such 𝑛-topoi𝑚-localic [HTT, §6.4.5].

5.2.3. If 𝑛 ∈ 𝑵, then the proof of [HTT, Proposition 6.4.5.9] demonstrates that an∞-
topos 𝑿 is 𝑛-localic if and only if 𝑿 ≃ Sh𝜏(𝑋), where (𝑋, 𝜏) is a 𝛿0-small 𝑛-site with all
finite limits.

5.2.4 Example. If𝑊 is a topological space, then 𝑊̃ is 0-localic.

5.2.5 Example. If𝑋 is a scheme, then the∞-topos𝑋ét of étale sheaves on the 1-site of
étale𝑋-schemes is 1-localic.

5.2.6 Warning. If (𝑋, 𝜏) is an 𝑛-site and the 𝑛-category 𝑋 does not have finite limits,
then the∞-topos Sh𝜏(𝑋) is not generally 𝑁-localic for any 𝑁 ≥ 0. See [SAG, Coun-
terexample 20.4.0.1] for a basis 𝐵 for the topology on the Hilbert cube ∏𝑖∈𝒁[0, 1] for
which the∞-topos of sheaves on 𝐵 is not𝑁-localic for any𝑁 ≥ 0.

5.2.7 Example. Let 𝑛 ∈ 𝑵 and let 𝑿 be an 𝑛-localic ∞-topos. Then [SAG, Lemma
1.4.7.7] demonstrates that for an object𝑈 ∈ 𝑿, the over∞-topos𝑿/𝑈 is 𝑛-localic if and
only if 𝑈 is 𝑛-truncated.

5.2.8 Definition. Denote by Top∧∞ the inverse limit of∞-categories

Top∧∞ ≔ lim
𝑛∈𝑵op

Top𝑛

along the various truncation functors 𝜏≤𝑚−1.This is the∞-category of sequences {𝑿𝑛}𝑛∈𝑵
in which each 𝑿𝑛 is an 𝑛-topos, along with identifications 𝑿𝑚 ≃ 𝜏≤𝑚−1𝑿𝑛 whenever
𝑚 ≤ 𝑛. The truncation functors provide a functor

𝜏∶ Top∞ → Top∧∞ ,

which carries an∞-topos𝑿 to the sequence {𝜏≤𝑛−1𝑿}𝑛∈𝑵.

5.2.9 Construction. The functor 𝜏∶ Top∞ → Top∧∞ admits a fully faithful right adjoint,
which identifies Top∧∞ with the full subcategory of Top∞ spanned by the bounded∞-
topoi [SAG, Proposition A.7.1.5]. These are the∞-topoi that can be exhibited as inverse
limits in Top∞ of a diagram of localic∞-topoi. Equivalently, an∞-topos𝑿 is bounded
if and only if the natural geometric morphism

𝑿 → lim
𝑛∈𝑵op
𝐿𝑛(𝑿)
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is an equivalence. Here 𝐿𝑛 ∶ Top∞ → Top𝑛∞ denotes the 𝑛-localic reflection functor, de-
fined as the left adjoint to the inclusionTop𝑛∞ ⊂ Top∞ of the full subcategory of 𝑛-localic
∞-topoi.

On the other hand, the functor 𝜏∶ Top∞ → Top∧∞ also admits a left adjoint, which is
necessarily fully faithful.This identifiesTop∧∞with the full subcategory ofTop∞ spanned
by the Postnikov complete∞-topoi [SAG, Corollary A.7.2.8]. These are the∞-topoi that
can exibited in Cat∞,𝛿1 as the inverse limit of their truncations.

We write (−)post for the right adjoint to the inclusion of the full subcategory of Top∞
spanned by the Postnikov complete∞-topoi, and write (−)b for the left adjoint to the
inclusion of the full subcategory of Top∞ spanned by the bounded∞-topoi. For an∞-
topos 𝑿, we call 𝑿post the Postnikov completion of 𝑿 and call 𝑿b the bounded reflection
of𝑿.

5.2.10. The relationship between bounded∞-topoi and Postnikov complete∞-topoi
is formally analogous to the relationship between 𝑝-nilpotent and 𝑝-complete abelian
groups.Of course𝑝-nilpotent and𝑝-complete abelian groups formequivalent categories,
but their embeddings into the category of all abelian groups differ.

5.3 Coherence
The second finiteness conditions that we impose on almost all of the∞-topoi we con-
sider is coherence.

5.3.1 Definition. Let 0 ≤ 𝑟 ≤ ∞, and let 𝑿 be an 𝑟-topos. We say that 𝑿 is 0-coherent
if and only if the 0-topos (=locale) Open(𝑿) is quasicompact. Let 𝑛 ∈ 𝑵∗, and define
𝑛-coherence of 𝑟-topoi and their objects recursively as follows.

→ An object 𝑈 ∈ 𝑿 is 𝑛-coherent if and only if the 𝑟-topos𝑿/𝑈 is 𝑛-coherent.

→ The 𝑟-topos𝑿 is locally 𝑛-coherent if and only if every object𝑈 ∈ 𝑿 admits a cover
{𝑉𝑖 → 𝑈}𝑖∈𝐼 in which each 𝑉𝑖 is 𝑛-coherent.

→ The 𝑟-topos 𝑿 is (𝑛 + 1)-coherent if and only if 𝑿 is locally 𝑛-coherent, and the
𝑛-coherent objects of𝑿 are closed under finite products.

In particular, if 𝑿 is locally 𝑛-coherent, then 𝑈 ∈ 𝑿 is (𝑛 + 1)-coherent if and only
if 𝑈 is 𝑛-coherent and for any pair 𝑈′, 𝑉 ∈ 𝑿/𝑈 of 𝑛-coherent objects, the fibre product
𝑈′ ×𝑈 𝑉 is 𝑛-coherent.

An 𝑟-topos 𝑿 is coherent if and only if 𝑿 is 𝑛-coherent for every 𝑛 ∈ 𝑵, and an
object𝑈 of an∞-topos𝑿 is coherent if and only if𝑿/𝑈 is a coherent 𝑟-topos. Finally, an
𝑟-topos𝑿 is locally coherent if and only if every object𝑈 ∈ 𝑿 admits a cover {𝑉𝑖 → 𝑈}𝑖∈𝐼
in which each 𝑉𝑖 is coherent.

5.3.2. We are mostly interested in coherence for∞-topoi, however we have introduced
the notion for 𝑟-topoi in general because an∞-topos 𝑿 is 𝑛-coherent if and only if its
underlying 𝑛-topos𝑿≤𝑛−1 is 𝑛-coherent (this is the content of §5.4).
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5.3.3 Notation. Let 0 ≤ 𝑟 ≤ ∞, and let 𝑿 be an 𝑟-topos. Write 𝑿coh ⊂ 𝑿 for the full
subcategory of𝑿 spanned by the coherent objects and𝑿coh

<∞ ⊂ 𝑿 for the full subcategory
of𝑿 spanned by the truncated coherent objects. For each integer 𝑛 ≥ 0, write𝑿𝑛-coh ⊂ 𝑿
for the full subcategory spanned by the 𝑛-coherent objects.

5.3.4. Let 0 ≤ 𝑟 ≤ ∞, let𝑿 be an 𝑟-topos, and let𝑈 ∈ 𝑿. Then for any integer 𝑛 ≥ 0, an
object 𝑈′ → 𝑈 of 𝑿/𝑈 is 𝑛-coherent if and only if 𝑈′ is 𝑛-coherent when viewed as an
object of𝑿. Thus we have canonical identifications

(𝑿𝑛-coh)/𝑈 = (𝑿/𝑈)𝑛-coh and (𝑿coh)/𝑈 = (𝑿/𝑈)coh

as full subcategories of𝑿/𝑈. If 𝑈 ∈ 𝑿<∞ is a truncated object, then we have a canonical
identification

(𝑿coh
<∞)/𝑈 = (𝑿/𝑈)coh<∞

as full subcategories of𝑿/𝑈.

5.3.5 Example. By [SAG, Proposition A.7.5.1], if 𝑿 is a bounded coherent ∞-topos,
then𝑿 is also locally coherent.

5.3.6Definition. Let𝑿 and𝒀 be∞-topoi.We say that a geometricmorphism𝑓∗ ∶ 𝑿 →
𝒀 is coherent if and only if, for any coherent object 𝐹 ∈ 𝒀, the object 𝑓∗(𝐹) ∈ 𝑿 is co-
herent as well. We write Topcoh

∞ for the subcategory of Top∞ whose objects are coherent
∞-topoi and whose morphisms are coherent geometric morphisms.

We defer examples of coherent∞-topoi to §5.7 where we can put all of our exam-
ples from algebraic geometry on the same footing after we develop the basic calculus of
finitary sites in this subsection and in §5.6.

5.3.7 Definition. An∞-site (𝑋, 𝜏) is finitary if and only if 𝑋 admits all fibre products,
and, for every object 𝑈 ∈ 𝑋 and every covering sieve 𝑆 ⊂ 𝑋/𝑈, there is a finite subset
{𝑈𝑖}𝑖∈𝐼 ⊂ 𝑆 that generates a covering sieve.

Let (𝑋, 𝜏𝑋) and (𝑌, 𝜏𝑌) be finitary∞-sites. A morphism of∞-sites

𝑓∗ ∶ (𝑌, 𝜏𝑌) → (𝑋, 𝜏𝑋)

is a morphism of finitary∞-sites if 𝑓∗ is preserves fibre products.

5.3.8 Proposition ([SAG, Proposition A.3.1.3]). Let (𝑋, 𝜏) be a finitary ∞-site. Then
the ∞-topos Sh𝜏(𝑋) locally coherent, and for every object 𝑥 ∈ 𝑋, the sheaf よ(𝑥) is a
coherent object of Sh𝜏(𝑋), whereよ ∶ 𝑋 → Sh𝜏(𝑋) is the sheafified Yoneda embedding. If,
in addition,𝑋 admits a terminal object, then Sh𝜏(𝑋) is coherent.

An elementary way to construct a finitary∞-site is to make use of an∞-categorical
analogue of the notion of pretopology on a 1-category.

5.3.9 Definition. An∞-presite is a pair (𝑋, 𝐸) consisting of an∞-category 𝑋 along
with a subcategory 𝐸 ⊆ 𝑋 satisfying the following conditions.

→ The subcategory 𝐸 contains all equivalences of𝑋.
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→ The∞-category𝑋 admits finite limits, and 𝐸 is stable under base change.

→ The∞-category𝑋 admits finite coproducts, which are universal, and 𝐸 is closed
under finite coproducts.

5.3.10 Construction. If (𝑋, 𝐸) is an∞-presite, then there exists a topology 𝜏𝐸 in which
the 𝜏𝐸-covering sieves are generated by finite families {𝑦𝑖 → 𝑥}𝑖∈𝐼 such that∐𝑖∈𝐼 𝑦𝑖 → 𝑥
lies in 𝐸. The∞-site (𝑋, 𝜏𝐸) is finitary.

5.4 Coherence & 𝑛-topoi
In this subsection we prove that the property that an∞-topos𝑿 be 𝑛-coherent only de-
pends on the underlying 𝑛-topos𝑿≤𝑛−1 of (𝑛−1)-truncated objects (Corollary 5.4.10).13
We begin with some preliminaries on the relationship between coherence and connec-
tivity.

5.4.1 Proposition ([SAG, Proposition A.2.4.1]). Let𝑿 be an∞-topos, let 𝑓∶ 𝑋 → 𝑌 be
a morphism in𝑿, and let 𝑛 ∈ 𝑵. Then

(5.4.1.1) If𝑋 is 𝑛-coherent and 𝑓 is 𝑛-connective, then 𝑌 is 𝑛-coherent.

(5.4.1.2) If 𝑌 is 𝑛-coherent and 𝑓 is (𝑛 + 1)-connective, then𝑋 is 𝑛-coherent.

Since the natural morphism from an object in an∞-topos to its 𝑛-truncation is (𝑛 + 1)-
connective, we deduce:

5.4.2 Corollary. Let 𝑿 be an∞-topos and 𝑛 ∈ 𝑵. An object 𝑋 ∈ 𝑿 is 𝑛-coherent if and
only if 𝜏≤𝑛−1(𝑋) is an 𝑛-coherent object of𝑿.

It is also easy to deduce the following.

5.4.3 Corollary ([SAG, Corollary A.2.4.4]). Let 𝑿 be a coherent∞-topos and 𝑛 ∈ 𝑵.
Then for any 𝑛-coherent𝑋 ∈ 𝑿, the (𝑛 − 1)-truncation 𝜏≤𝑛−1(𝑋) of𝑋 is a coherent object
of𝑿.

5.4.4 Corollary. Let 𝑿 be a coherent∞-topos. Then an object 𝑋 ∈ 𝑿 is coherent if and
only if for every 𝑛 ∈ 𝑵, the (𝑛 − 1)-truncation 𝜏≤𝑛−1(𝑋) of𝑋 is a coherent object of𝑿.

5.4.5 Corollary. Let 𝑓∗ ∶ 𝑿 → 𝒀 be a geometric morphism between coherent∞-topoi.
Then 𝑓∗ is coherent if and only if 𝑓∗ carries 𝒀coh<∞ to𝑿coh

<∞.

We also deduce that coherence of a geometricmorphism between coherent∞-topoi
is equivalent to the a priori stronger condition that the pullback functor preserve 𝑛-
coherent objects for all 𝑛 ≥ 0:14

5.4.6 Corollary. Let 𝑓∗ ∶ 𝑿 → 𝒀 be a geometric morphism between coherent∞-topoi.
Then 𝑓∗ is coherent if and only if 𝑓∗ carries 𝑛-coherent objects of 𝒀 to 𝑛-coherent objects
of𝑿 for all 𝑛 ∈ 𝑵.

13We are grateful to Jacob Lurie for conveying this observation.
14This second notion is how Grothendieck and Verdier originally defined coherence for geometric mor-

phisms between ordinary topoi [SGA 4ii, Exposé VI, Définition 3.1].
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Proof. It is immediate from the definition that if 𝑓∗ preserves 𝑛-coherence for all 𝑛 ≥ 0,
then 𝑓∗ is coherent. Suppose that 𝑓∗ is coherent, and let𝑈 ∈ 𝒀𝑛-coh be an 𝑛-coherent ob-
ject. Since 𝒀 is coherent, Corollary 5.4.3=[SAG, Corollary A.2.4.4] shows that 𝜏𝒀≤𝑛−1(𝑈)
is an 𝑛-coherent object of 𝒀. Since 𝑓∗ is coherent, we see that

𝑓∗𝜏𝒀≤𝑛−1(𝑈) ≃ 𝜏𝑿≤𝑛−1(𝑓∗(𝑈))

is a coherent object of𝑿. Corollary 5.4.2 then shows that 𝑓∗(𝑈) is an 𝑛-coherent object
of𝑿.

Before proceeding to the main results of this subsection, we need a two preliminary
facts on𝑚-connective morphisms in an∞-topos.

5.4.7 Lemma. Let𝑿 be an∞-topos and𝑚 ≥ 0 an integer. Let𝑊 ∈ 𝑿 and let 𝑢∶ 𝑈′ → 𝑈
and 𝑣∶ 𝑉′ → 𝑉 be morphisms in𝑿/𝑊. If 𝑢 and 𝑣 are𝑚-connective morphisms of𝑿, then
the induced morphism 𝑈′ ×𝑊 𝑉′ → 𝑈 ×𝑊 𝑉 is𝑚-connective.
Proof. First we treat the case where 𝑊 = 1𝑿 is the terminal object of 𝑿. In this case,
since 𝜏≤𝑚−1 ∶ 𝑿 → 𝑿 preserves finite products [HTT, Lemma 6.5.1.2] and 𝜏≤𝑚−1(𝑢)
and 𝜏≤𝑚−1(𝑣) are equivalences by assumption, we see that

𝜏≤𝑚−1(𝑢 × 𝑣) ≃ 𝜏≤𝑚−1(𝑢) × 𝜏≤𝑚−1(𝑣)

is an equivalence.
Now we treat the general case. In the diagram

𝑈′ ×𝑊 𝑉′ 𝑈 ×𝑊 𝑉 𝑊

𝑈′ × 𝑉′ 𝑈 × 𝑉 𝑊 ×𝑊

⌟ ⌟
𝛥𝑊

𝑢×𝑣

both squares are pullbacks and 𝑢×𝑣 is𝑚-connective (by the preceding paragraph). This
completes the proof since the class of𝑚-connective morphisms in an∞-topos is stable
under pullback [HTT, Proposition 6.5.1.16].

5.4.8 Lemma. Let𝑿 be an∞-topos and 𝑛 ∈ 𝑵. Let𝑊 ∈ 𝑿 and let𝑈 → 𝑊 and𝑉 → 𝑊
be morphisms in𝑿. If𝑊 is 𝑛-truncated, then the natural morphism

𝜏≤𝑛(𝑈 ×𝑊 𝑉) → 𝜏≤𝑛(𝑈) ×𝑊 𝜏≤𝑛(𝑉)

is an equivalence.

Proof. Since the naturalmorphisms𝑈 ↠ 𝜏≤𝑛(𝑈) and𝑉 ↠ 𝜏≤𝑛(𝑉) are (𝑛+1)-connective,
by Lemma 5.4.7 the natural morphism

𝜙∶ 𝑈 ×𝑊 𝑉 → 𝜏≤𝑛(𝑈) ×𝑊 𝜏≤𝑛(𝑉)

is (𝑛+1)-connective. Since𝑊 is 𝑛-truncated and the 𝑛-truncated objects of an∞-topos
are closed under limits, the object 𝜏≤𝑛(𝑈) ×𝑊 𝜏≤𝑛(𝑉) is 𝑛-truncated. By the uniqueness
of the factorisation of a morphism in an∞-topos into an (𝑛 + 1)-connective morphism
followed by an 𝑛-truncated morphism, we see that 𝜙 exhibits 𝜏≤𝑛(𝑈) ×𝑊 𝜏≤𝑛(𝑉) as the
𝑛-truncation of 𝑈 ×𝑊 𝑉.
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5.4.9 Proposition. Let 𝑿 be an∞-topos and 𝑛 ∈ 𝑵. The following are equivalent for an
(𝑛 − 1)-truncated object𝑊 ∈ 𝑿:

(5.4.9.1) As an object of the∞-topos𝑿, the object𝑊 is 𝑛-coherent.

(5.4.9.2) As an object of the 𝑛-topos𝑿≤𝑛−1, the object𝑊 is 𝑛-coherent.

Proof. Clearly (5.4.9.1) implies (5.4.9.2). We prove that (5.4.9.2) implies (5.4.9.1) by in-
duction on 𝑛. The base case 𝑛 = 0 is immediate from the definition of 0-coherence.

For the induction step assumewe have shown that an (𝑛−1)-truncated object of𝑿 is
𝑛-coherent if it is 𝑛-coherent as an object of the 𝑛-topos𝑿≤𝑛−1. Let𝑊 be an 𝑛-truncated
object of𝑿 that is (𝑛 + 1)-coherent as an object of the (𝑛 + 1)-topos𝑿≤𝑛; we prove that
𝑊 is (𝑛 + 1)-coherent as an object of the∞-topos 𝑿. First we show that 𝑿/𝑊 is locally
𝑛-coherent. Let 𝑓∶ 𝑈 → 𝑊 be a morphism in𝑿. Since𝑊 is 𝑛-truncated, 𝑓 factors as a
composite

𝑈 ↠ 𝜏≤𝑛(𝑈) → 𝑊 .

Since 𝑿≤𝑛,/𝑊 is locally 𝑛-coherent by assumption, there exists a cover {𝑈𝑖 → 𝜏≤𝑛(𝑈)}𝑖∈𝐼
of 𝜏≤𝑛(𝑈) such that for each 𝑖 ∈ 𝐼, the object 𝑈𝑖 ∈ 𝑿≤𝑛,/𝑊 is an 𝑛-coherent object
of 𝑿≤𝑛,/𝑊, or equivalently an 𝑛-coherent object of 𝑿≤𝑛 (5.3.4). Since the morphism
𝑈 ↠ 𝜏≤𝑛(𝑈) is (𝑛 + 1)-connective, Proposition 5.4.1=[SAG, Proposition A.2.4.1] and
the fact that (𝑛 + 1)-connective morphisms in an ∞-topos are stable under pullback
[HTT, Proposition 6.5.1.16] show that the family

{𝑈𝑖 ×𝜏≤𝑛(𝑈) 𝑈 → 𝑈}𝑖∈𝐼

is a cover of 𝑈 in𝑿/𝑊 by 𝑛-coherent objects. That is,𝑿/𝑊 is locally 𝑛-coherent.
Now let us show that the 𝑛-coherent objects of𝑿/𝑊 are stable under finite products.

Let 𝑓∶ 𝑈 → 𝑊 and 𝑔∶ 𝑉 → 𝑊 be morphisms in 𝑿/𝑊, where 𝑈 and 𝑉 are 𝑛-coherent.
Then since the 𝑛-coherent objects of𝑿≤𝑛,/𝑊 are stable under finite products by assump-
tion, we see that 𝜏≤𝑛(𝑈) ×𝑊 𝜏≤𝑛(𝑉) is an 𝑛-coherent object of 𝑿≤𝑛,𝑊. By the induction
hypothesis and Corollary 5.4.2, 𝜏≤𝑛(𝑈) ×𝑊 𝜏≤𝑛(𝑉) is an 𝑛-coherent object of 𝑿/𝑊. The
claim now follows from the fact that the natural morphism

𝑈 ×𝑊 𝑉 → 𝜏≤𝑛(𝑈) ×𝑊 𝜏≤𝑛(𝑉)

is (𝑛 + 1)-connective (Lemma 5.4.8) and Proposition 5.4.1=[SAG, Proposition A.2.4.1].

Setting𝑊 = 1𝑿 in Proposition 5.4.9 we deduce:

5.4.10 Corollary. Let 𝑛 ∈ 𝑵. The following are equivalent for an∞-topos𝑿:

(5.4.10.1) The∞-topos𝑿 is 𝑛-coherent.

(5.4.10.2) The 𝑛-topos𝑿≤𝑛−1 is 𝑛-coherent.

For the next few results, please recall the notations of Construction 5.2.9.
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5.4.11 Corollary. Let 𝑛 ∈ 𝑵 and let 𝑓∗ ∶ 𝑿 → 𝒀 be a geometric morphism of∞-topoi.
If 𝑓∗ induces an equivalence 𝑿≤𝑛−1 ⥲ 𝒀≤𝑛−1, then 𝑿 is 𝑛-coherent if and only if 𝒀 is
𝑛-coherent. Equivalently, if 𝑓∗ induces an equivalence 𝐿𝑛(𝑿) ⥲ 𝐿𝑛(𝒀) on 𝑛-localic reflec-
tions, then𝑿 is 𝑛-coherent if and only if 𝒀 is 𝑛-coherent.

Corollary 5.4.11 shows that there are many different ways to check the 𝑛-coherence of
an∞-topos.

5.4.12 Lemma. Let 𝑛 ∈ 𝑵. The following are equivalent for an∞-topos𝑿:

(5.4.12.1) The∞-topos𝑿 is 𝑛-coherent.

(5.4.12.2) The 𝑛-localic reflection 𝐿𝑛(𝑿) of𝑿 is 𝑛-coherent.

(5.4.12.3) The hypercompletion𝑿hyp of𝑿 is 𝑛-coherent (see Definition 5.11.4).

(5.4.12.4) The Postnikov completion𝑿post of𝑿 is 𝑛-coherent.

(5.4.12.5) The bounded reflection𝑿b of𝑿 is 𝑛-coherent.

Proof. The equivalence of these statements follows from repeated application of Corol-
lary 5.4.11.The equivalence of (5.4.12.1) and (5.4.12.2) follows immediately fromCorol-
lary 5.4.11.

To see that (5.4.12.1)⟺ (5.4.12.3), note that since truncated objects are hypercom-
plete, the natural fully faithful geometric morphism 𝑿hyp ↪ 𝑿 induces an equivalence
on (𝑛 − 1)-truncated objects.

To see that (5.4.12.1)⟺ (5.4.12.4), note that by [SAG, Proposition A.7.3.7] the
natural geometric morphism 𝑿post → 𝑿 is an equivalence when restricted to (𝑛 − 1)-
truncated objects.

To see that (5.4.12.1)⟺ (5.4.12.5), note that since the 𝑛-localic reflection functor
𝐿𝑛 ∶ Top∞ → Top∞ preserves inverse limits [SAG, Lemma A.7.1.4], the natural geo-
metric morphism

𝑿 → 𝑿b ≃ lim
𝑘∈𝑵op
𝐿𝑘(𝑿)

induces an equivalence on 𝑛-localic reflections.

5.4.13 (Postnikov complete coherent & bounded coherent∞-topoi). Let

𝑿′ 𝑿

𝒀′ 𝒀

𝑥∗

𝑓′∗ 𝑓∗

𝑦∗

be a commutative square in Top∞. Lemma 5.4.12 and Corollary 5.4.5 show that if 𝑥∗
and 𝑦∗ induce equivalences

𝑿′<∞ ⥲ 𝑿<∞ and 𝒀′<∞ ⥲ 𝒀<∞

on truncated objects, then 𝑓∗ is coherent if and only if 𝑓′∗ is coherent.
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In particular, a geometric morphism 𝑓∗ ∶ 𝑿 → 𝒀 between bounded coherent∞-
topoi is coherent if and only if the induced geometric morphism

𝑿post → 𝑿 and 𝒀post → 𝒀

on corresponding Postnikov complete coherent∞-topoi is coherent. Thus the equiva-
lence between Postnikov complete∞-topoi and bounded coherent∞-topoi (Construc-
tion 5.2.9) restricts to an equivalence between the subcategory of Postnikov complete
coherent∞-topoi and coherent geometric morphisms and the subcategory of bounded
coherent∞-topoi and coherent geometric morphisms.

5.5 Coherence of morphisms & 𝑛-localic∞-topoi
In this subsection we prove that coherence for an 𝑛-localic ∞-topos is equivalent to
(𝑛 + 1)-coherence, and may be checked on its underling 𝑛-topos (Proposition 5.5.6).
First we’ll need∞-toposic versions of a number of points from [SGA 4ii, Exposé VI,
§§1–3], which follow easily from [SAG, §A.2.1].

5.5.1 Definition. Let 𝑛 ∈ 𝑵 and let 𝑿 be a locally 𝑛-coherent∞-topos. A morphism
𝑈 → 𝑉 in 𝑿 is called relatively 𝑛-coherent if for every 𝑛-coherent object 𝑉′ ∈ 𝑿 and
every morphism 𝑉′ → 𝑉, the fibre product 𝑈 ×𝑉 𝑉′ is also 𝑛-coherent.

5.5.2 Example ([SAG, Example A.2.1.2]). Let 𝑿 be a locally 𝑛-coherent∞-topos and
𝑓∶ 𝑈 → 𝑉 a morphism in 𝑿. If 𝑈 is 𝑛-coherent and 𝑉 is (𝑛 + 1)-coherent, then 𝑓 is
relatively 𝑛-coherent.

5.5.3 Example. As a consequence of Proposition 5.4.1=[SAG, Proposition A.2.4.1] and
the fact that the class of (𝑛 + 1)-connective morphisms in an∞-topos is stable under
pullback [HTT, Proposition 6.5.1.16], the (𝑛 + 1)-connective morphism of an∞-topos
are ‘relatively 𝑛-coherent’ in a very strong sense: they satisfy the condition of relative
𝑛-coherence even without the need of local 𝑛-coherence assumptions on the∞-topos.

5.5.4 Lemma. Let 𝑛 ∈ 𝑵 and let 𝑿 be a locally 𝑛-coherent∞-topos. Let 𝑢∶ 𝑈′ → 𝑈
and 𝑣∶ 𝑉′ → 𝑉 be relatively 𝑛-coherent morphisms in𝑿,𝑊 ∈ 𝑿 an object, and 𝑈 → 𝑊
and 𝑉 → 𝑊 be any morphisms. Then the induced morphism 𝑈′ ×𝑊 𝑉′ → 𝑈 ×𝑊 𝑉 is
relatively 𝑛-coherent.

Proof. Let 𝑓∶ 𝑋 → 𝑈 ×𝑊 𝑉 be a morphism in 𝑿 where 𝑋 is 𝑛-coherent. Note that we
have equivalences of iterated fibre products

𝑋 ×
𝑈×𝑊𝑉
(𝑈′ ×𝑊 𝑉′) ≃ (𝑋 ×𝑈 𝑈′) ×𝑋 (𝑋 ×𝑉 𝑉′)

≃ (𝑋 ×𝑈 𝑈′) ×𝑉 𝑉′ .

First, since 𝑋 ×𝑈 𝑈′ is the pullback of pr1 ∘𝑓∶ 𝑋 → 𝑈 along the relatively 𝑛-coherent
morphism 𝑢, the object𝑋×𝑈𝑈′ is 𝑛-coherent. Second, (𝑋×𝑈𝑈′)×𝑉𝑉′ is the pullback of
themorphism𝑋 ×𝑈 𝑈′ → 𝑉 induced by pr2 ∘𝑓∶ 𝑋 → 𝑉 along the relatively 𝑛-coherent
morphism 𝑣. Hence (𝑋 ×𝑈 𝑈′) ×𝑉 𝑉′ is an 𝑛-coherent object of𝑿, as desired.
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5.5.5 Lemma. Let 𝑿 be an ∞-topos and 𝑚 ∈ 𝑵. Let 𝑿0 ⊂ 𝑿 be a full subcategory
satisfying the following conditions:

(5.5.5.1) The full subcategory𝑿0 ⊂ 𝑿 is closed under finite products.

(5.5.5.2) Every object of𝑿0 is𝑚-coherent.

(5.5.5.3) For every object 𝑈 ∈ 𝑿, there exists an effective epimorphism ∐𝑖∈𝐼𝑈𝑖 ↠ 𝑈
where 𝑈𝑖 ∈ 𝑿0 for each 𝑖 ∈ 𝐼.

Then the𝑚-coherent objects of𝑿 are closed under finite products.

Proof. Let 𝑿′0 ⊂ 𝑿 denote the closure of 𝑿0 under finite coproducts. Then every object
of𝑿′0 is𝑚-coherent, and since colimits in𝑿 are universal and𝑿0 is closed under finite
products,𝑿′0 ⊂ 𝑿 is closed under finite products.

Let𝑈,𝑉 ∈ 𝑿 be𝑚-coherent objects; we show that𝑈×𝑉 is𝑚-coherent. Since𝑈 and
𝑉 are quasicompact, there exist effective epimorphisms 𝑢∶ 𝑈′ ↠ 𝑈 and 𝑣∶ 𝑉′ ↠ 𝑉
where 𝑈′, 𝑉′ ∈ 𝑿′0. By [SAG, Example A.2.1.2] both 𝑢 and 𝑣 are relatively (𝑚 − 1)-
coherent. Lemma 5.5.4 shows that

𝑢 × 𝑣∶ 𝑈′ × 𝑉′ ↠ 𝑈 × 𝑉

is a relatively (𝑚−1)-coherent effective epimorphism. Since𝑈′×𝑉′ ∈ 𝑿′0 is𝑚-coherent
and𝑿 is locally𝑚-coherent, [SAG, Proposition A.2.1.3] shows that𝑈×𝑉 is𝑚-coherent,
as desired.

5.5.6 Proposition. Let 𝑛 ∈ 𝑵. The following are equivalent for an 𝑛-localic∞-topos𝑿:

(5.5.6.1) The 𝑛-topos𝑿≤𝑛−1 is (𝑛 + 1)-coherent.

(5.5.6.2) The∞-topos𝑿 is (𝑛 + 1)-coherent.

(5.5.6.3) The∞-topos𝑿 is coherent.

(5.5.6.4) The 𝑛-topos𝑿≤𝑛−1 is coherent.

Proof. Clearly (5.5.6.3)⟹ (5.5.6.4) and (5.5.6.4)⟹ (5.5.6.1).
Firstwe show that (5.5.6.1)⟹ (5.5.6.2). Corollary 5.4.10 shows that𝑿 is𝑛-coherent.

Now notice that every object of𝑿 admits a cover by (𝑛−1)-truncated 𝑛-coherent objects
(so, in particular,𝑿 is locally 𝑛-coherent). This follows from the following observations:

→ Since∞-topos𝑿 is 𝑛-localic, every object of𝑿 admits a cover by (𝑛−1)-truncated
objects.

→ Since the 𝑛-topos 𝑿≤𝑛−1 is locally 𝑛-coherent, Proposition 5.4.9 shows that every
(𝑛 − 1)-truncated object of 𝑿 admits a cover by (𝑛 − 1)-truncated 𝑛-coherent ob-
jects.
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Moreover, since the (𝑛−1)-truncated objects of an∞-topos are closed under limits and
𝑿≤𝑛−1 is (𝑛+1)-coherent, Proposition 5.4.9 shows that the (𝑛−1)-truncated 𝑛-coherent
objects of𝑿 are closed under finite products. Lemma 5.5.5 applied to the subcategory𝑿0
of (𝑛 − 1)-truncated 𝑛-coherent objects (so that𝑚 = 𝑛 in the notation of Lemma 5.5.5)
now shows that the 𝑛-coherent objects of𝑿 are closed under finite products.

Since an 𝑛-localic ∞-topos is 𝑁-localic for all 𝑁 ≥ 𝑛, to prove the implication
(5.5.6.2)⟹ (5.5.6.3), it suffices to prove that if𝑿 is (𝑛 + 1)-coherent, then𝑿 is (𝑛 + 2)-
coherent. First we show that 𝑿 is locally (𝑛 + 1)-coherent. We have already seen that
every object of 𝑿 admits a cover by a (𝑛 − 1)-truncated 𝑛-coherent objects, and that
the subcategory 𝑿0 of (𝑛 − 1)-truncated 𝑛-coherent objects is closed under finite prod-
ucts. Since𝑿 is (𝑛 + 1)-coherent, [SAG, Corollary A.2.4.3] shows that (𝑛 − 1)-truncated
𝑛-coherent objects of 𝑿 are automatically (𝑛 + 1)-coherent, immediately implying that
𝑿 is locally (𝑛 + 1)-coherent. Lemma 5.5.5 applied to the subcategory 𝑿0 of (𝑛 − 1)-
truncated (𝑛 + 1)-coherent objects (so that 𝑚 = 𝑛 + 1 in the notation of Lemma 5.5.5)
shows that the (𝑛 + 1)-coherent objects of𝑿 are closed under finite products.

5.6 Coherent geometricmorphisms via sites& coherent ordinary topoi
In this subsection we explain the relationship between coherent ordinary topoi in the
sense of [SGA 4ii, Exposé VI] and their corresponding 1-localic∞-topoi.15 (See [55;
56, Appendix C, §§5–6] for an excellent accounts of coherent ordinary topoi.) We show
that the ∞-category of coherent 1-localic ∞-topoi is equivalent to the 2-category of
coherent ordinary topoi. In fact, the results of §5.4 allow us to show that the∞-catego-
ry of coherent 𝑛-localic∞-topoi is equivalent to the (𝑛+1)-category of coherent 𝑛-topoi
(Proposition 5.6.11).

5.6.1 Recollection. A 1-topos𝑿 is coherent in the sense of [SGA 4ii, Exposé VI, Defini-
tion 2.3] if and only if𝑿 is 2-coherent in the sense of Definition 5.3.1. This is true if and
only if 𝑿 is equivalent to the 1-topos of sheaves of sets on a finitary 1-site (𝑋, 𝜏) with a
terminal object. Proposition 5.5.6 shows that𝑿 is coherent if and only if its correspond-
ing 1-localic∞-topos is coherent.

A geometric morphismmorphism of coherent 1-topoi𝑓∗ ∶ 𝑿 → 𝒀 is coherent [SGA
4ii, Exposé VI, Definition 3.1] if and only if 𝑓∗ is induced by a morphism of finitary 1-
sites 𝑓∗ ∶ (𝑌, 𝜏𝑌) → (𝑋, 𝜏𝑋).

The content of the equivalence between coherent 𝑛-topoi and coherent 𝑛-localic∞-
topoi reduces to showing that a coherent morphism of coherent 𝑛-topoi induces a co-
herent morphism of corresponding 𝑛-localic∞-topoi. This follows from the fact that
coherence of a geometric morphism between locally coherent∞-topoi can be checked
on a generating set of coherent objects (Corollary 5.6.6). A particularly useful conse-
quence is that morphisms of finitary ∞-sites induce coherent geometric morphisms
(Corollary 5.6.8).

First we need a few preliminary results. For this, please recall the notion of relative
𝑛-coherence (Definition 5.5.1) introduced in §5.5.

15The contents of this subsection originally appeared in a (partially expository) preprint of the third-named
author [32].
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5.6.2 Lemma. Let 𝑿 be an∞-topos. If 𝑒∶ 𝑈 ↠ 𝑉 is an effective epimorphism in 𝑿 and
𝑈 is quasicompact, then 𝑉 is quasicompact.

Proof. This is a special case of [SAG, Proposition A.2.1.3], or, alternatively, Proposi-
tion 5.4.1=[SAG, Proposition A.2.4.1].

5.6.3 Lemma. Let 𝑛 ≥ 1 be an integer and 𝑿 a locally (𝑛 − 1)-coherent∞-topos. Let
𝑈 ∈ 𝑿 and let 𝑒∶ ∐𝑖∈𝐼𝑈𝑖 ↠ 𝑈 be a cover of 𝑈 where 𝐼 is finite and 𝑈𝑖 is 𝑛-coherent for
each 𝑖 ∈ 𝐼. The following are equivalent:

(5.6.3.1) The effective epimorphism 𝑒 is relatively (𝑛 − 1)-coherent.

(5.6.3.2) For all 𝑖, 𝑗 ∈ 𝐼, the object 𝑈𝑖 ×𝑈 𝑈𝑗 is (𝑛 − 1)-coherent.

(5.6.3.3) The object 𝑈 is 𝑛-coherent.

Proof. If 𝑒 is relatively (𝑛 − 1)-coherent, then since coproducts in 𝑿 are universal, the
fibre product

(∐𝑖∈𝐼𝑈𝑖) ×𝑈 (∐𝑗∈𝐼𝑈𝑗) ≃ ∐
𝑖,𝑗∈𝐼
𝑈𝑖 ×𝑈 𝑈𝑗

is (𝑛 − 1)-coherent. Thus 𝑈𝑖 ×𝑈 𝑈𝑗 is (𝑛 − 1)-coherent for all 𝑖, 𝑗 ∈ 𝐼 [SAG, Remark
A.2.0.16].

If each𝑈𝑖 ×𝑈 𝑈𝑗 is (𝑛 − 1)-coherent, then since each𝑈𝑖 is 𝑛-coherent the pullback of
𝑒 along itself

∐
𝑖,𝑗∈𝐼
𝑈𝑖 ×𝑈 𝑈𝑗 ↠∐

𝑖∈𝐼
𝑈𝑖

is relatively (𝑛 − 1)-coherent (Example 5.5.2=[SAG, Example A.2.1.2]). Applying [SAG,
Corollary A.2.1.5] we deduce that 𝑒∶ ∐𝑖∈𝐼𝑈𝑖 ↠ 𝑈 is relatively (𝑛 − 1)-coherent.

To conclude, note that if 𝑒∶ ∐𝑖∈𝐼𝑈𝑖 ↠ 𝑈 is relatively (𝑛 − 1)-coherent, then [SAG,
Proposition A.2.1.3] shows that 𝑈 is 𝑛-coherent. On the other hand, if 𝑈 is 𝑛-coherent,
then 𝑒 is (𝑛 − 1)-coherent by Example 5.5.2=[SAG, Example A.2.1.2].

5.6.4 Proposition. Let 𝑓∗ ∶ 𝑿 → 𝒀 be a geometric morphism of∞-topoi and 𝑛 ∈ 𝑵.
Assume that:

(5.6.4.1) There exists a collection of 𝑛-coherent objects 𝒀0 ⊂ Obj(𝒀) of 𝒀 such that for
every 𝑛-coherent object 𝑈 ∈ 𝒀 there exists a cover∐𝑖∈𝐼𝑈𝑖 ↠ 𝑈 where 𝑈𝑖 ∈ 𝒀0
for each 𝑖 ∈ 𝐼.

(5.6.4.2) The pullback functor 𝑓∗ ∶ 𝒀 → 𝑿 takes objects of 𝒀0 to 𝑛-coherent objects of𝑿.

(5.6.4.3) If 𝑛 ≥ 1, the∞-topoi 𝑿 and 𝒀 are locally (𝑛 − 1)-coherent and 𝑓∗ ∶ 𝒀 → 𝑿
takes (𝑛 − 1)-coherent objects of 𝒀 to (𝑛 − 1)-coherent objects of𝑿.

Then 𝑓∗ takes 𝑛-coherent objects of 𝒀 to 𝑛-coherent objects of𝑿.
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Proof. Let𝑈 ∈ 𝒀 be an 𝑛-coherent object; we show that𝑓∗(𝑈) is 𝑛-coherent. By assump-
tion there exists a cover

𝑒∶ ∐
𝑖∈𝐼
𝑈𝑖 ↠ 𝑈

where 𝑈𝑖 ∈ 𝒀0 for each 𝑖 ∈ 𝐼 and 𝐼 is finite (since 𝑈 is, in particular, 0-coherent). For
all 𝑖 ∈ 𝐼 the object 𝑓∗(𝑈𝑖) is 𝑛-coherent by assumption, so since 𝑛-coherent objects are
closed under finite coproducts [SAG, Remark A.2.0.16], the object

𝑓∗ (∐𝑖∈𝐼𝑈𝑖) ≃ ∐
𝑖∈𝐼
𝑓∗(𝑈𝑖)

is 𝑛-coherent.
Note that

𝑓∗(𝑒) ∶ ∐
𝑖∈𝐼
𝑓∗(𝑈𝑖) ↠ 𝑓∗(𝑈)

is an effective epimorphism in𝑿. If 𝑛 = 0, this proves the claim (Lemma 5.6.2). If 𝑛 ≥ 1,
then Lemma 5.6.3 shows that it suffices to show that for all 𝑖, 𝑗 ∈ 𝐼, the object

𝑓∗(𝑈𝑖) ×𝑓∗(𝑈) 𝑓∗(𝑈𝑗) ≃ 𝑓∗(𝑈𝑖 ×𝑈 𝑈𝑗)

is (𝑛 − 1)-coherent. This follows from the fact that 𝑈𝑖 ×𝑈 𝑈𝑗 is (𝑛 − 1)-coherent (by
Lemma 5.6.3) and the assumption that 𝑓∗ sends (𝑛− 1)-coherent objects of 𝒀 to (𝑛− 1)-
coherent objects of𝑿.

Proposition 5.6.4 shows that coherence of a geometric morphism between locally co-
herent∞-topoi is equivalent to the a priori stronger condition that the pullback functor
preserve 𝑛-coherent objects for all 𝑛 ≥ 0; see also Corollary 5.4.6.

5.6.5 Corollary. Let 𝑓∗ ∶ 𝑿 → 𝒀 be a geometric morphism between locally coherent∞-
topoi. Then 𝑓∗ is coherent if and only if 𝑓∗ takes 𝑛-coherent objects of 𝒀 to 𝑛-coherent
objects of𝑿 for all 𝑛 ≥ 0.

Proposition 5.6.4 also shows that coherence of a geometricmorphismcanbe checked
on a generating set of coherent objects.

5.6.6 Corollary. Let 𝑓∗ ∶ 𝑿 → 𝒀 be a geometric morphism between locally coherent∞-
topoi. Let 𝒀0 ⊂ Obj(𝒀coh) be a collection of coherent objects such that for every object
𝑈 ∈ 𝒀 there exists a cover∐𝑖∈𝐼𝑈𝑖 ↠ 𝑈 where 𝑈𝑖 ∈ 𝒀0 for each 𝑖 ∈ 𝐼. If for all 𝑈 ∈ 𝒀0 the
object 𝑓∗(𝑈) is coherent, the geometric morphism 𝑓∗ ∶ 𝑿 → 𝒀 is coherent.

For the next result, we need the following lemma.

5.6.7 Lemma. Let𝑓∗ ∶ (𝑌, 𝜏𝑌) → (𝑋, 𝜏𝑋) be amorphism of∞-sites, andwriteよ𝑌 ∶ 𝑌 →
Sh𝜏𝑌(𝑌) for the sheafified Yoneda embedding. If the topology 𝜏𝑋 is finitary, then

𝑓∗よ𝑌 ∶ 𝑌 → Sh𝜏𝑋(𝑋)

factors through Sh𝜏𝑋(𝑋)
coh ⊂ Sh𝜏𝑋(𝑋).
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Proof. We have a commutative square

𝑌 𝑋

Sh𝜏𝑌(𝑌) Sh𝜏𝑋(𝑋)

𝑝∗

ょ𝑌 ょ𝑋

𝑝∗

where the vertical functors are sheafified Yoneda embeddings. The claim now follows
from the fact thatよ𝑋 ∶ 𝑋 → Sh𝜏𝑋(𝑋) factors through Sh𝜏𝑋(𝑋)

coh, since the topology 𝜏𝑋
is finitary (Proposition 5.3.8=[SAG, Proposition A.3.1.3]).

5.6.8 Corollary. Let 𝑓∗ ∶ (𝑌, 𝜏𝑌) → (𝑋, 𝜏𝑋) be a morphism of finitary∞-sites. Then the
geometric morphism

𝑓∗ ∶ Sh𝜏𝑋(𝑋) → Sh𝜏𝑌(𝑌)
is coherent.

Proof. By Proposition 5.3.8, both Sh𝜏𝑋(𝑋) and Sh𝜏𝑌(𝑌) are locally coherent. The image
よ𝑌(𝑌) of 𝑌 under the sheafified Yoneda embedding generates Sh𝜏𝑌(𝑌) under colimits,
so by Corollary 5.6.6 it suffices to check that 𝑓∗ carries objects in よ𝑌(𝑌) to coherent
objects of𝑿; this the content of Lemma 5.6.7.

5.6.9. Proposition 5.5.6 and Corollaries 5.6.6 and 5.6.8 together show that a geometric
morphismof coherent 1-topoi is coherent in the sense of [SGA4ii, ExposéVI,Definition
3.1] if and only if the geometric morphism of corresponding of 1-localic ∞-topoi is
coherent if and only if the geometric morphism of coherent 1-topoi is coherent in the
sense of Definition 5.3.6.

5.6.10Notation. Let 𝑛 ∈ 𝑵.WriteTop𝑛,coh∞ ⊂ Top
coh
∞ for the full subcategory spanned by

the 𝑛-localic coherent∞-topoi. Write Topcoh
𝑛 ⊂ Top𝑛 for the subcategory of the (𝑛 + 1)-

category of 𝑛-topoi with objects coherent 𝑛-topoi and morphisms coherent geometric
morphisms. When 𝑛 = 1, the 2-category Topcoh

1 is the 2-category of ordinary coherent
topoi and coherent geometric morphisms (both in the sense of [SGA 4ii, Exposé VI]).

Proposition 5.5.6 and Corollary 5.6.6 immediately imply the following:

5.6.11 Proposition. Let 𝑛 ∈ 𝑵. The equivalence of∞-categories 𝜏≤𝑛−1 ∶ Top𝑛∞ ⥲ Top𝑛
restricts to an equivalence

𝜏≤𝑛−1 ∶ Top𝑛,coh∞ ⥲ Topcoh
𝑛

5.6.12 Corollary. Let 𝑛 ∈ 𝑵. The following are equivalent for a geometric morphism
𝑓∗ ∶ 𝑿 → 𝒀 between 𝑛-localic coherent∞-topoi:

(5.6.12.1) The geometric morphism 𝑓∗ ∶ 𝑿 → 𝒀 is coherent.

(5.6.12.2) The pullback functor 𝑓∗ ∶ 𝒀 → 𝑿 carries (𝑛 − 1)-truncated 𝑛-coherent objects
of 𝒀 to 𝑛-coherent objects of𝑿.
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5.7 Examples of coherent∞-topoi from algebraic geometry
In this subsection we provide a few examples of coherent∞-topoi from algebraic geom-
etry that Corollary 5.6.8 puts on the same footing.

5.7.1 Example. For a spectral topological space 𝑆, write Openqc(𝑆) ⊂ Open(𝑆) for the
locale of quasicompact opens in 𝑆. Since the quasicompact opens of 𝑆 form a basis for the
topology on 𝑆 that is closed under finite intersections the∞-topos Sh(Openqc(𝑆)) is 0-
localic. Applying [56, Proposition B.6.4] we see that the inclusion Openqc(𝑆) ⊂ Open(𝑆)
induces an equivalence of 0-localic∞-topoi

𝑆 ≃ Sh(Openqc(𝑆)) .

The Grothendieck topology on Openqc(𝑆) is finitary, so the∞-topos 𝑆 of sheaves on 𝑆
is a coherent∞-topos. (Cf. [SAG, Lemma 2.3.4.1]).

If 𝑓∶ 𝑆 → 𝑇 is a quasicompact continuous map of spectral topological spaces, the
inverse image map 𝑓−1 ∶ Open(𝑇) → Open(𝑆) restricts to a map

𝑓−1 ∶ Openqc(𝑇) → Openqc(𝑆) .

Corollary 5.6.8 shows that the induced geometric morphism 𝑓∗ ∶ 𝑆 → 𝑇̃ is coherent.
Since spectral topological spaces are sober, a continuous map 𝑓∶ 𝑆 → 𝑇 of spectral
topological spaces induces a coherent geometric morphism on the level of∞-topoi if
and only if 𝑓 is quasicompact.

5.7.2. If𝑿 is a coherent∞-topos, then the underlying topological space of𝑿 is spectral
[51, Chapter II, §§3.3–3.4].

Combining the fact that the Zariski, Nisnevich16, étale, and proétale17 topoi of a
scheme all have the same underlying topological space with the fact that if a scheme
𝑋 is quasicompact and quasiseparated, then the topoi of sheaves on 𝑋 in each of these
topologies is coherent [SAG, Proposition 2.3.4.2 & Remark 3.7.4.2; 7, Appendix A; 56,
Example 7.1.7], we deduce the following:

5.7.3 Proposition. The following are equivalent for a scheme𝑋:

(5.7.3.1) The scheme𝑋 is coherent (i.e., quasicompact and quasiseparated).

(5.7.3.2) The Zariski∞-topos𝑋zar of𝑋 is a coherent∞-topos.

(5.7.3.3) The Nisnevich∞-topos𝑋nis of𝑋 is a coherent∞-topos.

(5.7.3.4) The étale∞-topos𝑋ét of𝑋 is a coherent∞-topos.

(5.7.3.5) The proétale∞-topos𝑋proét of𝑋 is a coherent∞-topos.

5.7.4. In the case of the étale topology, see also [SAG, Proposition 2.3.4.2].
16For background on the Nisnevich topology, see [SAG, §3.7; 43; 39; 68].
17For background on the proétale topology, see [STK, Tags 0988 & 099R; 11].
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5.7.5 Example. Let 𝑓∶ 𝑋 → 𝑌 be a morphism of coherent schemes and let

𝜏 ∈ {zar, nis, ét, proét} .

Then the induced geometric morphism 𝑓∗ ∶ 𝑋𝜏 → 𝑌𝜏 on ∞-topoi of 𝜏-sheaves is a
coherent geometric morphism of coherent∞-topoi. (Cf. [SAG, Proposition 2.3.5.1])

5.7.6 Example. Let𝑋 be a coherent scheme. Then the natural geometric morphisms

𝑋proét → 𝑋ét , 𝑋ét → 𝑋nis , and 𝑋nis → 𝑋zar

are all coherent geometric morphisms of coherent∞-topoi.

5.8 Classification of bounded coherent∞-topoi via∞-pretopoi
In this subsection we explain how an ∞-topos that is both bounded and coherent is
determined by its truncated coherent objects.

5.8.1 Notation. Denote by Topbc
∞ ⊂ Top

coh
∞ the full subcategory spanned by those co-

herent∞-topoi that are also bounded, that is, the bounded coherent∞-topoi

To a large extent, bounded coherent∞-topoi function in much the same way as co-
herent 1-topoi. In particular, any bounded coherent∞-topos is, in a canonical fashion,
the∞-category of sheaves on an∞-site with excellent formal properties.

5.8.2 Definition. An∞-category 𝑋 is said to be an∞-pretopos if and only if the fol-
lowing conditions are satisfied.

→ The∞-category𝑋 admits finite limits.

→ The∞-category𝑋 admits finite coproducts, which are universal and disjoint.

→ Groupoid objects in𝑋 are effective, and their geometric realisations are universal.

If𝑋 and 𝑌 are∞-pretopoi, then a functor 𝑓∗ ∶ 𝑌 → 𝑋 is a morphism of∞-pretopoi
if 𝑓∗ preserves finite limits, finite coproducts, and effective epimorphisms. We write
preTop∞ ⊂ Cat∞,𝛿1 for the subcategory consisting of∞-pretopoi and morphisms of
∞-pretopoi.

5.8.3 Example. If𝑿 is a coherent∞-topos, then the full subcategory𝑿coh ⊆ 𝑿 spanned
by the coherent objects is an∞-pretopos [SAG, Corollary A.6.1.7].

The following two useful facts are immediate from the definitions.

5.8.4 Lemma. Let {𝑋𝑖}𝑖∈𝐼 be a collection of ∞-pretopoi. Then the product ∏𝑖∈𝐼𝑋𝑖 in
Cat∞,𝛿1 is an∞-pretopos and for each 𝑗 ∈ 𝐼 the projection

pr𝑗 ∶ ∏
𝑖∈𝐼
𝑋𝑖 → 𝑋𝑗

is a morphism of∞-pretopoi.
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5.8.5 Lemma. Given morphisms of∞-pretopoi𝑋 → 𝑍 and𝑌 → 𝑍, the pullback𝑋×𝑍𝑌
in Cat∞,𝛿1 is an∞-pretopos, and the projections

pr1 ∶ 𝑋 ×𝑍 𝑌 → 𝑋 and pr2 ∶ 𝑋 ×𝑍 𝑌 → 𝑋

are morphisms of∞-pretopoi.

5.8.6Notation. If𝑋 is an∞-pretopos, then if𝐸 ⊆ 𝑋 is the collection of effective epimor-
phisms, then (𝑋, 𝐸) is an∞-presite, andwewriteeff ≔ 𝜏𝐸 for the resulting finitary topol-
ogy, the effective epimorphism topology [SAG, §A.6.2], which is a subcanonical topology
[SAG, Corollary A.6.2.6].

5.8.7 Definition. An∞-pretopos 𝑋 is bounded if and only if 𝑋 is essentially 𝛿0-small
and every object of 𝑋 is truncated. We write preTopb

∞ ⊂ preTop∞ for the full subcate-
gory spanned by the bounded∞-pretopoi.

5.8.8 Theorem ([SAG, Theorem A.7.5.3]). The constructions 𝑿 ↦ 𝑿coh
<∞ and 𝑋 ↦

Sheff(𝑋) are mutually inverse equivalences of∞-categories

Topbc
∞ ≃ preTopb,op

∞ .

The following bounded analogue of Lemma 5.8.4 will also be useful later.

5.8.9 Lemma. Let {𝑋𝑖}𝑖∈𝐼 be a finite collection of bounded∞-pretopoi. Then the∞-pre-
topos given by the product∏𝑖∈𝐼𝑋𝑖 in Cat∞,𝛿1 is a bounded∞-pretopos.

Proof. For each 𝑖 ∈ 𝐼 the∞-category 𝑋𝑖 is essentially 𝛿0-small, so the product∏𝑖∈𝐼𝑋𝑖
is also essentially 𝛿0-small. For any integer 𝑛 ≥ −2, an object 𝐹 ∈ ∏𝑖∈𝐼𝑋𝑖 is 𝑛-truncated
if and only if pr𝑖(𝐹) ∈ 𝑋𝑖 is 𝑛-truncated for all 𝑖 ∈ 𝐼. Since 𝐼 is finite and every object of
each of the∞-categories {𝑋𝑖}𝑖∈𝐼 is truncated by assumption, every object of the product
∏𝑖∈𝐼𝑋𝑖 is truncated.

5.9 Coherence of inverse limits
We now recall that bounded coherent∞-topoi and coherent geometric morphisms are
stable under inverse limits in Top∞.

5.9.1 Proposition ([SAG, Proposition A.8.3.1]). The ∞-category preTopb
∞ admits fil-

tered colimits and the forgetful functor preTopb
∞ → Cat∞,𝛿1 preserves filtered colimits.

5.9.2 Proposition ([SAG, Proposition A.8.3.2]). Let 𝑋∶ 𝐴 → preTopb
∞ be a filtered

diagram of bounded∞-pretopoi. Then the natural geometric morphism

Sheff(colim𝛼∈𝐴𝑋𝛼) → lim𝛼∈𝐴op Sheff(𝑋𝛼)

is an equivalence in Top∞.

The following is immediate from the previous two propositions and Theorem 5.1.9=
[HTT, Theorem 6.3.3.1].

5.9.3 Corollary ([SAG, Corollary A.8.3.3]). The∞-category Topbc
∞ admits inverse lim-

its and the inclusion Topbc
∞ → Top∞ and forgetful functor Topbc

∞ → Cat∞,𝛿1 preserves
inverse limits.
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5.10 Coherence & preservation of filtered colimits
The goal of this subsection is to prove the appropriate∞-toposic generalisation of the
fact that a coherent geometricmorphismof 1-topoi preserves filtered colimits (seeCorol-
lary 5.10.4).18

5.10.1 Recollection. Since filtered colimits commute with finite limits in an∞-topos,
for any ∞-topos 𝑿 and integer 𝑛 ≥ −2, the inclusion 𝜏≤𝑛𝑿 ↪ 𝑿 preserves filtered
colimits. Thus𝑿≤𝑛 is an 𝜔-accessible localisation of𝑿.

5.10.2 Lemma. Let (𝑋, 𝜏) be a finitary∞-site, write𝑿 ≔ Sh𝜏(𝑋), and writeよ ∶ 𝑋 → 𝑿
for the sheafified Yoneda embedding. Then for all integers 𝑛 ≥ −2 and 𝑥 ∈ 𝑋, the functor

Map𝑿(よ(𝑥), −) ∶ 𝑿≤𝑛 → 𝑺

preserves filtered colimits.

Proof. Write 𝑈 ≔ よ(𝑥) and let 𝑝∗ ∶ 𝑿/𝑈 → 𝑿 denote the natural étale geometric mor-
phism. Let 𝑉∶ 𝐴 → 𝑿≤𝑛 be a filtered diagram. Then we have

Map𝑿(𝑈, colim𝛼∈𝐴 𝑉𝛼) ≃ Map𝑿(𝑝!(1𝑿/𝑈), colim𝛼∈𝐴 𝑉𝛼)
≃ Map𝑿/𝑈(1𝑿/𝑈 , colim𝛼∈𝐴 𝑝

∗(𝑉𝛼)) .

Since 𝑈 ∈ 𝑿 is coherent Proposition 5.3.8=[SAG, Proposition A.3.1.3], the global sec-
tions functor

Map𝑿/𝑈(1𝑿/𝑈 , −) ∶ (𝑿/𝑈)≤𝑛 → 𝑺

preserves filtered colimits [SAG, Proposition A.2.3.1]. Hence

Map𝑿(𝑈, colim𝛼∈𝐴 𝑉𝛼) ≃ colim𝛼∈𝐴 Map𝑿/𝑈(1𝑿/𝑈 , 𝑝
∗(𝑉𝛼))

≃ colim
𝛼∈𝐴

Map𝑿(𝑝!(1𝑿/𝑈), 𝑉𝛼)

≃ colim
𝛼∈𝐴

Map𝑿(𝑈, 𝑉𝛼) .

5.10.3 Proposition. Let 𝑓∗ ∶ (𝑌, 𝜏𝑌) → (𝑋, 𝜏𝑋) be a morphism of finitary∞-sites. Then
for each integer 𝑛 ≥ −2, the restriction of 𝑓∗ ∶ Sh𝜏𝑋(𝑋) → Sh𝜏𝑌(𝑌) to Sh𝜏𝑋(𝑋)≤𝑛 preserves
filtered colimits.

Proof. Write 𝑿 ≔ Sh𝜏𝑋(𝑋), 𝒀 ≔ Sh𝜏𝑌(𝑌), and よ𝑋 ∶ 𝑋 → 𝑿 and よ𝑌 ∶ 𝑌 → 𝒀 for
the sheafified Yoneda embeddings. Let 𝑉∶ 𝐴 → 𝑿≤𝑛 be a filtered diagram. Since the
essential image ofよ𝑌 generates 𝒀 under colimits, to see that the natural morphism

colim𝛼∈𝐴 𝑓∗(𝑉𝛼) → 𝑓∗(colim𝛼∈𝐴 𝑉𝛼)

is an equivalence, it suffices to show that for all 𝑦 ∈ 𝑌, the induced morphism

Map𝒀(よ𝑌(𝑦), colim𝛼∈𝐴 𝑓∗(𝑉𝛼)) → Map𝒀(よ𝑌(𝑦), 𝑓∗(colim𝛼∈𝐴 𝑉𝛼))
18We learned how to simplify and generalise the material in this subsection from its original form through

a preprint of Chang-Yeon Chough [17, Theorem 3.4].
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is an equivalence. Applying Lemma 5.10.2 toよ𝑌(𝑦) and 𝑓∗よ𝑌(𝑦) ≃ よ𝑋(𝑓∗(𝑦)) we see
that

Map𝒀(よ𝑌(𝑦), colim𝛼∈𝐴 𝑓∗(𝑉𝛼)) ≃ colim𝛼∈𝐴 Map𝒀(よ𝑌(𝑦), 𝑓∗(𝑉𝛼))

≃ colim
𝛼∈𝐴

Map𝒀(𝑓∗よ𝑌(𝑦), 𝑉𝛼)

≃ Map𝒀(𝑓∗よ𝑌(𝑦), colim𝛼∈𝐴 𝑉𝛼)
≃ Map𝒀(よ𝑌(𝑦), 𝑓∗(colim𝛼∈𝐴 𝑉𝛼)) .

In light of Theorem 5.8.8=[SAG, Theorem A.7.5.3], Proposition 5.10.3 specialises to
the following.

5.10.4 Corollary. Let 𝑓∗ ∶ 𝑿 → 𝒀 be a coherent geometric morphism between bounded
coherent ∞-topoi. Then for any integer 𝑛 ≥ −2, the restriction of 𝑓∗ to 𝑿≤𝑛 preserves
filtered colimits.

5.11 Points, Conceptual Completeness, & Deligne Completeness
In this subsection we discuss points of∞-topoi as well as the∞-toposic generalisations
of the Conceptual Completeness Theorem of Makkai–Reyes and Deligne’s Complete-
ness Theorem.

5.11.1 Notation. For an∞-topos𝑿, we write

Pt(𝑿) ≔ Fun∗(𝑺, 𝑿)op ≃ Fun∗(𝑿, 𝑺)

of the∞-category of points of𝑿.
We note that a morphism 𝑔∗ → 𝑓∗ of Pt(𝑿) is a natural transformation 𝑓∗ →
𝑔∗. (The morphisms are the ‘geometric transformations’ usually preferred in 1-topos
theory.) This choice syncs well with the direction of posets: for instance, when 𝑃 is a
noetherian poset, one has Pt(𝑃) ≃ 𝑃.
In general, the passage from an∞-topos to its∞-category of points loses quite a bit
of information. However, the∞-toposic version of the Conceptual Completeness The-
orem of Makkai–Reyes [57, Theorem 9.2] tells us that bounded coherent∞-topoi are
determined by their∞-categories of points.

5.11.2 Theorem (Conceptual Completeness ; [SAG, Theorem A.9.0.6]). A geometric
morphism 𝑓∗ ∶ 𝑿 → 𝒀 between bounded coherent∞-topoi is an equivalence if and only
if 𝑓∗ is coherent and the induced functor Pt(𝑓∗) ∶ Pt(𝑿) → Pt(𝒀) is an equivalence of
∞-categories.
5.11.3 Definition. An∞-topos 𝑿 has enough points if a morphism 𝜙 in 𝑿 is an equiv-
alence if and only if for every point 𝑥∗ ∈ Pt(𝑿) the stalk 𝑥∗𝜙 is an equivalence.

In classical topos theory, the Deligne Completeness Theorem [SGA 4ii, Exposé VI,
Proposition 9.0] states that a coherent ordinary topos has enough points. This is no
longer true in the setting of∞-topoi, the main obstruction being that∞-connective
morphisms in an∞-topos need not be equivalences. For this reason the∞-categorical
version of Deligne’s theorem takes place in the setting of∞-topoi where∞-connective
morphisms are equivalences, i.e.,∞-topoi in which Whitehead’s Theorem is valid.
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5.11.4 Definition. Let 𝑿 be an ∞-topos. An object 𝑈 ∈ 𝑿 is hypercomplete if 𝑈 is
local with respect to the class of∞-connective morphisms in 𝑿. We write 𝑿hyp ⊂ 𝑿
for the full subcategory spanned by the hypercomplete objects of 𝑿. An ∞-topos is
hypercomplete if𝑿hyp = 𝑿.

5.11.5. The∞-category 𝑿hyp ⊂ 𝑿 is a left exact localisation of 𝑿, hence an∞-topos
[HTT, p. 699]. Moreover, the∞-topos𝑿hyp is hypercomplete [HTT, Lemma 6.5.2.12].

The∞-topos𝑿hyp is characterised by the following universal property.

5.11.6 Proposition ([HTT, Proposition 6.5.2.13]). Let𝑿 be an∞-topos. Then for every
hypercomplete∞-topos 𝑯, composition with the inclusion 𝑿hyp ⊂ 𝑿 induces an equiva-
lence

Fun∗(𝑯,𝑿hyp) ⥲ Fun∗(𝑯,𝑿) .

Consequently, the assignment𝑿 ↦ 𝑿hyp defines a functor right adjoint to the inclusion
of hypercomplete∞-topoi into all∞-topoi. For this reason we call 𝑿hyp the hypercom-
pletion of𝑿.

5.11.7 Example. An∞-topos with enough points is hypercomplete.

5.11.8 Example. Let𝑿 be a 1-topos with corresponding 1-localic∞-topos𝑿′. Then𝑿
has enough points (in the sense of [SGA 4i, Exposé IV, Définition 6.4.1]) if and only if
the hypercomplete∞-topos (𝑿′)hyp has enough points.

In light of Example 5.11.7, the following is the correct∞-toposic generalisation of
Deligne’s completeness theorem.

5.11.9 Theorem (∞-Categorical Deligne Completeness; [SAG, Proposition A.4.0.5]).
An∞-topos that is locally coherent and hypercomplete has enough points.

We have already seen that the coherence of an∞-topos only depends on its hyper-
completion (Lemma 5.4.12). The following proposition gives a more refined assertion
about the relationship between the coherent objects of an∞-topos and its hypercom-
pletion.

5.11.10 Proposition ([SAG, Proposition A.2.2.2]). Let 𝑿 be an ∞-topos, and write
𝐿∶ 𝑿 → 𝑿hyp for the left adjoint to the inclusion 𝑿hyp ↪ 𝑿. If 𝑿 is locally 𝑛-coherent for
all 𝑛 ≥ 0, then:

(5.11.10.1) The∞-topos𝑿hyp is locally 𝑛-coherent for all 𝑛 ≥ 0.

(5.11.10.2) An object𝑈 of𝑿hyp is coherent if and only if𝑈 is coherent when viewed as an
object of𝑿.

(5.11.10.3) An object 𝑈 ∈ 𝑿 is coherent if and only if 𝐿(𝑈) is coherent.

5.11.11 Corollary. Let𝑿 be an∞-topos. If𝑿 is (locally) coherent, then the hypercomple-
tion𝑿hyp of𝑿 is (locally) coherent.

5.11.12 Example. Let 𝑿 be a bounded coherent∞-topos. Then since 𝑿 is also locally
coherent (Example 5.3.5), the hypercompletion𝑿hyp of𝑿 is coherent and locally coher-
ent.
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5.11.13. Please observe that for an∞-topos 𝑿, the hypercompletion 𝑿hyp has enough
points if and only if ∞-connectiveness of morphisms in 𝑿 can be checked on stalks,
i.e., a morphism 𝜙 in𝑿 is∞-connective if and only if for every point 𝑥∗ of𝑿, the stalk
𝑥∗𝜙 is an equivalence in 𝑺.TheDeligne CompletenessTheorem (Theorem 5.11.9=[SAG,
Proposition A.4.0.5]) and Corollary 5.11.11 show that ∞-connectiveness in a locally
coherent∞-topos can be checked on stalks.

5.12 Protruncated objects
In this subsection, we recall some facts about protruncated objects that we’ll need as well
as record an interesting observation (Lemma 5.12.6) which does not seem to be in the
literature.

5.12.1 Notation. Let 𝐶 be a presentable∞-category. For each integer 𝑛 ≥ −2, write
𝐶≤𝑛 ⊂ 𝐶 for the full subcategory spanned by the 𝑛-truncated objects, and 𝜏≤𝑛 ∶ 𝐶 →
𝐶≤𝑛 for the 𝑛-truncation functor, which is left adjoint to the inclusion 𝐶≤𝑛 ⊂ 𝐶 [HTT,
Proposition 5.5.6.18]. Write 𝐶<∞ ⊂ 𝐶 for the full subcategory spanned by those objects
which are 𝑛-truncated for some integer 𝑛 ≥ −2.

The pro-𝑛-truncation functor 𝜏≤𝑛 ∶ Pro(𝐶) → Pro(𝐶≤𝑛) is the extension of the 𝑛-
truncation functor 𝜏≤𝑛 ∶ 𝐶 → 𝐶≤𝑛 to pröbjects.

5.12.2. Let 𝐶 be a presentable∞-category. Then the extension to pröbjects of the func-
tor 𝐶 → Pro(𝐶<∞) given by sending an object 𝑋 ∈ 𝐶 to the inverse system given by its
Postnikov tower {𝜏≤𝑛(𝑋)}𝑛≥−2 is left adjoint to the inclusion Pro(𝐶<∞) ↪ Pro(𝐶). We
call this left adjoint 𝜏<∞ ∶ Pro(𝐶) → Pro(𝐶<∞) protruncation. A morphism of pröbjects
𝑓∶ 𝑋 → 𝑌, regarded as left exact accessible functors 𝐶 → 𝑺, becomes an equivalence
after protuncation if and only if for every truncated object 𝐾 ∈ 𝐶<∞, the induced mor-
phism 𝑓(𝐾)∶ 𝑋(𝐾) → 𝑌(𝐾) is an equivalence.

If𝐶 is an∞-topos, then the protruncation functor 𝜏<∞ also preserves finite products
since truncations do [HTT, Lemma 6.5.1.2].

5.12.3. Morphisms in the ∞-category Pro(𝑺) of prospaces that induce equivalences
after protruncation are precisely those morphisms that become ♮-isomorphisms in the
category Pro(ℎ𝑺), in the terminology ofMike Artin and Barry Mazur [4, Definition 4.2].

5.12.4. Isaksen’s strict model structure on pro-simplicial sets [48] presents the∞-catego-
ry Pro(𝑺) of prospaces [41, Lemma 3.1].Themodel structure that Isaksen defines in [46]
is the left Bousfield localisation of the strict model structure at the 𝜏<∞-equivalences,
hence presents the∞-category Pro(𝑺<∞) of protruncated spaces [41, Remark 3.2]. The
latter model structure is what is almost always used étale homotopy theory, for exam-
ple in the recent work of Schmidt–Stix [77] on the étale homotopy type and anabelian
geometry.

5.12.5. Let 𝐶 be a presentable∞-category. The essentially unique functor

mat ∶ Pro(𝐶) → 𝐶
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that perserves inverse limits and restricts to the identity 𝐶 → 𝐶 is right adjoint to the
Yoneda embeddingよ ∶ 𝐶 ↪ Pro(𝐶) [SAG, Example A.8.1.7]. We call mat the material-
isation functor. Hence we have adjunctions

𝐶 Pro(𝐶) Pro(𝐶<∞) .
ょ
mat

𝜏<∞

If Postnikov towers converge in 𝐶 [SAG, Definition A.7.2.1], then the composite left
adjoint is also fully faithful:

5.12.6 Lemma. Let 𝐶 be a Postnikov complete presentable∞-category (e.g., a Postnikov
complete∞-topos). Then the protruncation functor

𝜏<∞ ∶ 𝐶 → Pro(𝐶<∞)

is fully faithful. Moreover, the essential image of 𝜏<∞ ∶ 𝐶 ↪ Pro(𝐶<∞) is the full sub-
category spanned by those protruncated objects 𝑋 such that for each integer 𝑛 ≥ −2, the
pro-𝑛-truncation 𝜏≤𝑛(𝑋) ∈ Pro(𝐶≤𝑛) is a constant pröbject.

Proof. It suffices to show that for any object𝑋 ∈ 𝐶, the unitmorphism𝑋 → mat 𝜏<∞(𝑋)
is an equivalence. This follows from the equivalence

mat 𝜏<∞(𝑋) ≃ lim𝑛≥−2 𝜏≤𝑛(𝑋)

and the assumption that Postnikov towers converge in 𝐶.

5.12.7. Composing the fully faithful functor 𝜏<∞ ∶ 𝑺 ↪ Pro(𝑺<∞) with the inclusion
Pro(𝑺<∞) ↪ Pro(𝑺) gives another embedding of spaces into prospaces: for a space 𝐾,
the natural morphism of prospaces 𝑗(𝐾) → 𝜏<∞(𝐾) is an equivalence if and only if 𝐾
is truncated. Unlike the Yoneda embedding, the functor 𝜏<∞ ∶ 𝑺 ↪ Pro(𝑺) is neither a
left nor a right adjoint.

5.13 Shape theory
We now recall the basics of shape theory for∞-topoi. The shape is crucial to the study
of Stone∞-topoi presented in the next subsection, as well as our development of the
stratified shape in Part III and stratified étale homotopy type in Part IV.

5.13.1 Definition. The shape𝛱∞ ∶ Top∞ → Pro(𝑺) is the left adjoint to the extension
to proöbjects of the fully faithful functor 𝑺 ↪ Top∞ given by 𝛱 ↦ 𝑺/𝛱 ≃ Fun(𝛱, 𝑺)
[SAG, §E.2.2]. The shape admits two other very useful descriptions:

→ Let 𝑿 be an∞-topos, and write 𝛤! ∶ 𝑿 → Pro(𝑺) for the proëxistent left adjoint
of 𝛤∗ ∶ 𝑺 → 𝑿. The shape of𝑿 is equivalent to the prospace 𝛤!(1𝑿) [HA, Remark
A.1.10; 40, §2].

→ As a left exact accessible functor 𝑺 → 𝑺, the prospace 𝛱∞(𝑿) is the compos-
ite 𝛤∗𝛤∗ [HTT, §7.1.6; 40, §2]. Under this identification, the shape assigns to a
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geometric morphism 𝑓∗ ∶ 𝑿 → 𝒀 with unit 𝜂∶ id𝒀 → 𝑓∗𝑓∗ the morphism of
prospaces corresponding to

𝛤𝒀,∗𝜂𝛤∗𝒀 ∶ 𝛤𝒀,∗𝛤∗𝒀 → 𝛤𝒀,∗𝑓∗𝑓∗𝛤∗𝒀
in Pro(𝑺)op ⊂ Fun(𝑺, 𝑺).

5.13.2. The functor 𝜆∶ Pro(𝑺) → Top∞ given by extending the fully faithful functor
𝑺 ↪ Top∞ to proöbjects is not itself fully faithful.

5.13.3 Notation. We write 𝐻∶ Cat∞ → 𝑺 for the left adjoint to the inclusion, given
by sending an∞-category 𝐶 to the∞-groupoid 𝐻(𝐶) obtained by inverting all of the
morphisms of 𝐶.19 The∞-groupoid𝐻(𝐶) is given by the colimit𝐻(𝐶) ≃ colim𝐶 1𝑺 of
the constant diagram 𝐶 → 𝑺 at the terminal object.

5.13.4 Example. If 𝐶 is a small∞-category, then 𝛤∗ ∶ 𝑺 → Fun(𝐶, 𝑺) admits a genuine
left adjoint 𝛤! ∶ Fun(𝐶, 𝑺) → 𝑺 given by taking the colimit of a diagram 𝐶 → 𝑺.20 The
shape of the∞-topos Fun(𝐶, 𝑺) is thus given by the colimit of the constant diagram at
the terminal object of 𝑺:

𝛱∞(Fun(𝐶, 𝑺)) = 𝛤!(1Fun(𝐶,𝑺)) = colim𝐶 1𝑺 ≃ 𝐻(𝐶) .

Moreover, the functor𝐻∶ Cat∞ → 𝑺 is equivalent to the composite

Cat∞ Top∞ 𝑺 .Fun(−,𝑺) 𝛱∞

5.13.5 Definition. A geometric morphism 𝑓∗ ∶ 𝑿 → 𝒀 of∞-topoi is a shape equiva-
lence if the induced morphism𝛱∞(𝑓∗) ∶ 𝛱∞(𝑿) → 𝛱∞(𝒀) is an equivalence in Pro(𝑺).
An∞-topos𝑿 is said to have trivial shape if𝛱∞(𝑿) is a terminal object of Pro(𝑺).
5.13.6. Work of Hoyois [40, Proposition 2.6] shows that a geometric morphism 𝑓∗ is
a shape equivalence if and only if 𝑓∗ induces an equivalence of∞-categories of (space-
valued) torsors.

5.13.7Warning. Thepullback (inTop∞) of a shape equivalence is not generally a shape
equivalence, even when both morphisms are shape equivalences. As an example, con-
sider the space 𝑋 ≔ [0, 1], and its closed subspace 𝑍 ≔ {0} and open complement
𝑈 ≔ (0, 1]. Then the∞-topoi 𝑋, 𝑈̃, and 𝑍 all have trivial shape and the natural inclu-
sions 𝑍 ↪ 𝑋 and 𝑈̃ ↪ 𝑋 are both shape equivalences [HA, Example A.4.5], however
the pullback 𝑍 ×𝑋 𝑈̃ is the initial∞-topos ∅̃, which has empty shape.

5.13.8 Notation. Let 𝑛 ≥ −2 be an integer. We write

𝛱𝑛 ≔ 𝜏≤𝑛 ∘ 𝛱∞ ∶ Top∞ → Pro(𝑺≤𝑛)

for the pro-𝑛-truncated shape (Notation 5.12.1). We write

𝛱<∞ ≔ 𝜏<∞ ∘ 𝛱∞ ∶ Top∞ → Pro(𝑺<∞)

for the protruncated shape (5.12.2).
19In simplicial sets the functor𝐻 can be modeled as Kan’s Ex∞ functor.
20That is to say, presheaf∞-topoi are locally of constant shape [HA, Definition A.1.5 & Proposition A.1.8].
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5.13.9 Example. Since truncated objects of an∞-topos are hypercomplete, for any∞-
topos𝑿, the natural geometric morphism𝑿hyp ↪ 𝑿 induces an equivalence

𝛱<∞(𝑿hyp) ⥲ 𝛱<∞(𝑿)

on protruncated shapes.

The remainder of this subsection is dedicated to proving that the protruncated shape
preserves limits of inverse systems of bounded coherent∞-topoi and coherent geomet-
ric morphisms (Corollary 5.13.16).21 This follows from the more general fact that the
protruncated shape preserves limits of systems of∞-topoi and geometric morphisms
in which the pushforward preserve filtered colimits of uniformly truncated objects. We
learned this from Chang-Yeon Chough [17, §3]; though Chough’s paper only states this
for the profinite shape, his proof works for the protruncated shape. We fix some useful
notation for the next few results.

5.13.10 Notation. Let𝑿∶ 𝐼 → Top∞ be an inverse diagram of∞-topoi. For each mor-
phism 𝛼∶ 𝑗 → 𝑖 in 𝐼, we write

𝑓𝛼,∗ ∶ 𝑿𝑗 → 𝑿𝑖
for the transition morphism. For each 𝑖 ∈ 𝐼, we write

𝜋𝑖,∗ ∶ lim𝑖∈𝐼 𝑿𝑖 → 𝑿𝑖

for the projection. In addition, assume for each morphism 𝛼∶ 𝑗 → 𝑖 in 𝐼 and integer
𝑛 ≥ −2, the restriction 𝑓𝛼,∗ ∶ 𝑿𝑗,≤𝑛 → 𝑿𝑖 of 𝑓𝛼,∗ to 𝑛-truncated objects preserves filtered
colimits.

5.13.11 Proposition. Under the assumptions of Notation 5.13.10, for each 𝑖 ∈ 𝐼 and
truncated object 𝑈 ∈ 𝑿<∞ we have

(5.13.12) 𝜋∗𝑖 (𝑈) ≃ { colim
(𝛼,𝛽)∈(𝐼/𝑖×𝐼𝐼/𝑗)op

𝑓𝛽,∗𝑓∗𝛼 (𝑈)}
𝑗∈𝐼

.

Proof. Since inverse limits in Top∞ are computed in Cat∞,𝛿1 (Theorem 5.1.9=[HTT,
Theorem 6.3.3.1]), the assumption that each 𝑓𝛼,∗ preserve filtered colimits of uniformly
truncated objects guarentees that the right-hand side of (5.13.12) is awell-defined object
of lim𝑗∈𝐼𝑿𝑗.

For each 𝑖 ∈ 𝐼, the forgetful functor 𝐼/𝑖 → 𝐼 is limit-cofinal [HTT, Example 5.4.5.9
& Lemma 5.4.5.12], so we may without loss of generality assume that 𝑖 ∈ 𝐼 is a terminal
object. In this case, a simple cofinality argument shows that

colim
(𝛼,𝛽)∈(𝐼/𝑖×𝐼𝐼/𝑗)op

𝑓𝛽,∗𝑓∗𝛼 (𝑈) ≃ colim
[𝛽 ∶ 𝑘→𝑗]∈(𝐼/𝑗)op

𝑓𝛽,∗𝑓∗𝑘 (𝑈) ,

21A proof of this can be found in work of the third-named author [31, Proposition 2.2], but we present a
better proof here.
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where 𝑓𝑘,∗ ∶ 𝑿𝑘 → 𝑿𝑖 is the geometric morphism induced by the essentially unique
morphism 𝑘 → 𝑖. By definition, for all 𝑉 ∈ 𝑿 we have

Map𝑿({ colim
[𝛽 ∶ 𝑘→𝑗]∈(𝐼/𝑗)op

𝑓𝛽,∗𝑓∗𝑘 (𝑈)}
𝑗∈𝐼
, 𝑉) ≃ lim

𝑗∈𝐼
Map𝑿𝑗 ( colim

𝛽∈(𝐼/𝑗)op
𝑓𝛽,∗𝑓∗𝑘 (𝑈), 𝜋𝑗,∗(𝑉))

≃ lim
𝑗∈𝐼

lim
𝛽∈𝐼/𝑗

Map𝑿𝑗(𝑓𝛽,∗𝑓
∗
𝑘 (𝑈), 𝜋𝑗,∗(𝑉))

≃ lim
𝑗∈𝐼

lim
𝛽∈𝐼/𝑗

Map𝑿𝑗(𝑓𝛽,∗𝑓
∗
𝑘 (𝑈), 𝑓𝛽,∗𝜋𝑘,∗(𝑉))

Rewriting the limit as a limit over 𝛽 ∈ Fun(𝛥1, 𝐼) and using the fact that the constant
functor 𝐼 → Fun(𝛥1, 𝐼) is limit-cofinal (since it is a right adjoint), we see that

Map𝑿({ colim
[𝛽 ∶ 𝑘→𝑗]∈(𝐼/𝑗)op

𝑓𝛽,∗𝑓∗𝑘 (𝑈)}
𝑗∈𝐼
, 𝑉) ≃ lim

𝛽∈Fun(𝛥1,𝐼)
Map𝑿𝑗(𝑓𝛽,∗𝑓

∗
𝑘 (𝑈), 𝑓𝛽,∗𝜋𝑘,∗(𝑉))

≃ lim
𝑘∈𝐼

Map𝑿𝑘(𝑓
∗
𝑘 (𝑈), 𝜋𝑘,∗(𝑉))

≃ lim
𝑘∈𝐼

Map𝑿(𝜋∗𝑘𝑓∗𝑘 (𝑈), 𝑉)

≃ lim
𝑘∈𝐼

Map𝑿(𝜋∗𝑖 (𝑈), 𝑉)

= Map𝑿(𝜋∗𝑖 (𝑈), 𝑉) .

5.13.13 Corollary. Keep the assumptions of Proposition 5.13.11. Then for each 𝑖 ∈ 𝐼 and
truncated object 𝑈 ∈ 𝑿𝑖,<∞, we have an equivalence

𝜋𝑖,∗𝜋∗𝑖 (𝑈) ≃ colim
𝛼∈(𝐼/𝑖)op
𝑓𝛼,∗𝑓∗𝛼 (𝑈)

of objects of𝑿𝑖.

Proof. For each 𝑖 ∈ 𝐼, the forgetful functor 𝐼/𝑖 → 𝐼 is limit-cofinal [HTT, Example
5.4.5.9 & Lemma 5.4.5.12], so we may without loss of generality assume that 𝑖 ∈ 𝐼 is a
terminal object. Then the claim is clear from Proposition 5.13.11 and the definition of
𝜋𝑖,∗.

5.13.14 Proposition. Keep the assumptions of Proposition 5.13.11, and in addition as-
sume that for each 𝑖 ∈ 𝐼 and integer 𝑛 ≥ −2 the global sections functor 𝛤𝑿𝑖,∗ ∶ 𝑿𝑖 → 𝑺
preserves filtered colimits when restricted to𝑿≤𝑛. Then the natural morphism

𝛱∞(𝑿) → lim
𝑖∈𝐼
𝛱∞(𝑿𝑖)

becomes an equivalence after protruncation.

Proof. For each 𝑖 ∈ 𝐼, the forgetful functor 𝐼/𝑖 → 𝐼 is limit-cofinal [HTT, Example
5.4.5.9 & Lemma 5.4.5.12], so we may without loss of generality assume that 𝐼 admits
a terminal object 1. Write 𝛤𝑖,∗ ≔ 𝛤𝑿𝑖,∗, 𝑓𝑖,∗ ∶ 𝑿𝑖 → 𝑿1 for the geometric morphism
induced by the essentially unique morphism 𝑖 → 1 in 𝐼, and 𝛤∗ ∶ lim𝑗∈𝐼𝑿𝑗 → 𝑺 for the
global sections geometric morphism.
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We want to show that the natural morphism

colim
𝑖∈𝐼op
𝛤𝑖,∗𝛤∗𝑖 → 𝛤∗𝛤∗

in Fun(𝑺, 𝑺) is an equivalence when restricted to truncated spaces (5.12.2). For any trun-
cated space 𝐾, we see that we have equivalences

colim
𝑖∈𝐼op
𝛤𝑖,∗𝛤∗𝑖 (𝐾) ≃ colim𝑖∈𝐼op 𝛤1,∗𝑓𝑖,∗𝑓

∗
𝑖 𝛤∗1 (𝐾)

⥲ 𝛤1,∗ (colim𝑖∈𝐼op 𝑓𝑖,∗𝑓
∗
𝑖 𝛤∗1 (𝐾)) (assumption on 𝛤𝑖,∗)

≃ 𝛤1,∗ ∘ (colim𝑖∈𝐼op 𝑓𝑖,∗𝑓
∗
𝑖 ) ∘ 𝛤∗1 (𝐾)

⥲ 𝛤1,∗ ∘ 𝜋1,∗𝜋∗1 ∘ 𝛤∗1 (𝐾) (Proposition 5.13.11)
≃ 𝛤∗𝛤∗(𝐾) .

5.13.15. In particular, the assumptions of Proposition 5.13.14 are satisfied for inverse
systems of coherent∞-topoi where the transition morphisms preserve filtered colimits
of uniformly truncated objects [SAG, Theorem A.2.3.1].

From Corollary 5.10.4 and Proposition 5.13.14 we deduce:

5.13.16 Corollary. The protruncated shape

𝛱<∞ ∶ Topbc
∞ → Pro(𝑺<∞)

preserves inverse limits.

5.14 Profinite spaces & Stone∞-topoi
In this subsectionwe discuss profinite spaces and their relation to∞-topoi, as developed
in [SAG, Appendix E].

5.14.1 Definition. We write mat ∶ 𝑺∧𝜋 → 𝑺 for the right adjoint to (−)∧𝜋 and refer to mat
as the materialisation functor.

5.14.2 Definition. The profinite shape functor is the composite

𝛱∧∞ ≔ (−)∧𝜋 ∘ 𝛱∞ ∶ Top∞ → 𝑺∧𝜋

of the shape functor𝛱∞ with the profinite completion functor (−)∧𝜋 ∶ Pro(𝑺) → 𝑺∧𝜋.

5.14.3Theorem ([SAG, Theorem E.2.4.1]). The composite

𝜆𝜋 ∶ 𝑺∧𝜋 Pro(𝑺) Top∞
𝜆

of the inclusion 𝑺∧𝜋 ⊂ Pro(𝑺)with the functor 𝜆 of (5.13.2) is fully faithful and right adjoint
to the profinite shape functor𝛱∧∞.
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5.14.4 Definition. An∞-topos𝑿 is Stone22 if𝑿 lies in the essential image of 𝜆𝜋 ∶ 𝑺∧𝜋 ↪
Top∞.WewriteTopStone

∞ ⊂ Top∞ for the full subcategory spanned by the Stone∞-topoi.
Consequently, the inclusion TopStone

∞ ↪ Top∞ admits a left adjoint

(−)Stone ∶ Top∞ → TopStone
∞

which we refer to as the Stone reflection.

5.14.5 Proposition ([SAG, Proposition E.3.1.4]). Let𝑿 and 𝒀 be∞-topoi. If 𝒀 is Stone,
then the∞-category Fun∗(𝑿, 𝒀) is an (essentially small)∞-groupoid.

5.14.6. If 𝒀 is a Stone∞-topos, then since 𝑺 is Stone and 𝜆𝜋 is fully faithful with left
adjoint given by the profinite shape, we see that

Pt(𝒀) ≃ MapTop∞(𝑺, 𝒀) ≃ mat𝛱∧∞(𝒀) .

Since Stone ∞-topoi are bounded and coherent, Conceptual Completeness (The-
orem 5.11.2=[SAG, Theorem A.9.0.6]) implies the following ‘Whitehead theorem’ for
profinite spaces.

5.14.7 Theorem (Whitehead’s Theorem for profinite spaces; [SAG, Theorem E.3.1.6]).
The materialisation functor mat ∶ 𝑺∧𝜋 → 𝑺 is conservative.

5.14.8 Proposition ([SAG, Proposition E.4.6.1]). Let 𝑛 ∈ 𝑵. A morphism 𝑓 in 𝑺∧𝜋 is
𝑛-truncated if and only if mat(𝑓) is an 𝑛-truncated morphism of 𝑺.

Stone∞-topoi have a number of useful alternative characterisations.The first is that,
under the assumption of bounded coherence, the conclusion of Proposition 5.14.5=
[SAG, Proposition E.3.1.4] actually characterises Stone∞-topoi.

5.14.9Theorem ([SAG, Theorem E.3.4.1]). Let𝑿 be an∞-topos. Then𝑿 is Stone if and
only if both of the following conditions are satisfied.

→ The∞-topos𝑿 is bounded and coherent.

→ The∞-category of points Pt(𝑿) of𝑿 is an∞-groupoid.

The next characterisation is that bounded coherent objects are in fact lisse.

5.14.10 Recollection. Let𝑿 be an∞-topos. An object 𝐹 ∈ 𝑿 is said to be a local system
if and only if there exists a cover {𝑈𝑖}𝑖∈𝐼 of the terminal object of𝑿 and a corresponding
family {𝐾𝑖}𝑖∈𝐼 of spaces such that for any 𝑖 ∈ 𝐼, one has an equivalence 𝐹 × 𝑈𝑖 ≃ 𝛤∗𝑿𝐾𝑖.

We say that a local system 𝐹 as above is a lisse sheaf or lisse object23 if, in addition,
the set 𝐼 can be chosen to be finite, and the spaces 𝐾𝑖 can be chosen to be 𝜋-finite.

We denote by 𝑿locsys ⊆ 𝑿 (respectively, by 𝑿lisse ⊆ 𝑿) the full subcategory spanned
by the local systems (respectively, the lisse sheaves). Please note that for any geometric
morphism of∞-topoi 𝑓∗ ∶ 𝑿 → 𝒀, the pullback 𝑓∗ ∶ 𝒀 → 𝑿 preserves lisse objects.

22Lurie calls these∞-topoi profinite.
23Lurie uses the phrase locally constant constructible.
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There is a simple characterisation of lisse sheaves as a single pullback:

5.14.11 Lemma ([SAG, Proposition E.2.7.7]). Let𝑿 be an∞-topos. Then an object 𝐹 of
𝑿 is lisse if and only if there exist: a full subcategory 𝐺 ⊂ 𝜄𝑺𝜋 spanned by finitely many ob-
jects, an essentially unique geometric morphism 𝑔∗ ∶ 𝑿 → 𝑺/𝐺, and an essentially unique
equivalence 𝐹 ≃ 𝑔∗(𝐼), where 𝐼 classifies the inclusion functor 𝐺 → 𝑺.

For later use, let us include the following, which equivalent to the fact that the profinite
shape𝛱∧∞ ∶ Topbc

∞ → 𝑺∧𝜋 preserves inverse limits (see Corollary 5.13.16).

5.14.12 Lemma. For any 𝜋-finite space 𝐺, the∞-topos 𝑺/𝐺 is cocompact in Topbc
∞. That

is, for any inverse system {𝑿𝛼}𝛼∈𝐴 of bounded coherent∞-topoi with limit𝑿, the natural
functor

Fun∗(𝑿, 𝑺/𝐺) → lim
𝛼∈𝐴

Fun∗(𝑿𝛼, 𝑺/𝐺)

is an equivalence.

5.14.13 Proposition ([SAG, Proposition E.3.1.1]). Let𝑿 be∞-topos. Then𝑿 is Stone if
and only if both of the following conditions are satisfied.

→ The∞-topos𝑿 is bounded and coherent.

→ Every truncated coherent object of𝑿 is lisse.

5.14.14 Corollary ([SAG, Corollary E.3.1.2]). Let𝑓∗ ∶ 𝑿 → 𝒀 be a geometric morphism
between coherent∞-topoi. If 𝒀 is Stone, then 𝑓∗ is coherent.

5.14.15Theorem ([SAG, Theorem E.2.3.2]). Let𝑿 be an∞-topos. Then:

→ The∞-category 𝑿lisse is a bounded∞-pretopos and the inclusion 𝑿lisse ↪ 𝑿 is a
morphism of∞-pretopoi.

→ The inclusion 𝑿lisse ↪ 𝑿 induces a geometric morphism 𝑿 → Sheff(𝑿lisse) which
exhibits Sheff(𝑿lisse) as the Stone reflection of𝑿.

5.14.16 Corollary ([SAG, Corollary E.2.3.3]). Let𝑓∗ ∶ 𝑿 → 𝒀 be a geometric morphism
of∞-topoi. The following are equivalent:

→ The induced geometric morphism 𝑓Stone∗ ∶ 𝑿Stone → 𝒀Stone is an equivalence of∞-
topoi.

→ The geometric morphism 𝑓∗ is a profinite shape equivalence.

→ The morphism Pt(𝑓Stone∗ ) is an equivalence of∞-groupoids.

→ The pullback functor 𝑓∗ restricts to an equivalence of∞-categories 𝒀lisse ⥲ 𝑿lisse.

Putting together the basics about Stone ∞-topoi gives an alternative proof of the
monodromy equivalence for lisse local systems proved by Bachmann and Hoyois [7,
Proposition 10.1].
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5.14.17 Proposition. Let 𝑿 be an ∞-topos the unit 𝑿 → 𝑿Stone of the adjunction to
Stone∞-topoi restricts to an equivalence

Fun(𝛱∧∞(𝑿), 𝑺𝜋) ≃ 𝑿lisse .

Proof. Represent the profinite shape 𝛱∧∞(𝑿) by an inverse system {𝛱𝛼}𝛼∈𝐴 of 𝜋-finite
spaces so that

Fun(𝛱∧∞(𝑿), 𝑺𝜋) = colim𝛼∈𝐴op Fun(𝛱𝛼, 𝑺𝜋) .

For any 𝜋-finite space𝛱 we have Fun(𝛱, 𝑺)coh<∞ = Fun(𝛱, 𝑺𝜋), so

Fun(𝛱∧∞(𝑿), 𝑺𝜋) = colim𝛼∈𝐴op Fun(𝛱𝛼, 𝑺)coh<∞

≃ (lim𝛼∈𝐴 Fun(𝛱𝛼, 𝑺))coh<∞
≃ (𝑿Stone)coh<∞
≃ 𝑿lisse ,

where the first equivalence follows from Proposition 5.9.2=[SAG, Proposition A.8.3.2],
the second is the definition of the Stone reflection, and the last equialence follows from
Proposition 5.14.13=[SAG, Proposition E.3.1.1].

5.14.18 Example. Let𝑋 be a coherent scheme, andwrite𝑋fét for the finite étale site of𝑋:
the full subcategory of the étale site𝑋ét spanned by the finite étale𝑋-schemes, with the
induced topology (see [1, §VI.9]). Since the finite étale site is a finitary site, the 1-localic
finite étale∞-topos 𝑋fét ≔ Sh(𝑋fét) is coherent (Proposition 5.3.8=[SAG, Proposition
A.3.1.3]). The finite étale∞-topos𝑋fét is the classifying topos of the profinite étale fun-
damental groupoid of𝑋 (cf. [SGA 1, Exposé V, Proposition 5.8; 1, Lemma VI.9.11]). In
particular, the finite étale∞-topos𝑋fét is Stone.

6 Oriented pushouts & oriented fibre products
Deligne [SGA 7ii, Exposé XIII; 53] (the latter text written by Gérard Laumon) con-
structed a 1-topos, called the evanescent or vanishing topos, which he identified as the
natural target for the nearby cycles functor. To do so, he identified, in terms of generat-
ing sites, the oriented fibre product in a double category of 1-topoi (whose existence was
proved first byGiraud [26]). In the∞-categorical setting, we shall perform an analogous
construction in order to describe the link between two strata in a stratified∞-topos that
satisfies suitable finiteness hypotheses.

6.1 Recollements of higher topoi
6.1.1. If 𝑿 is an ∞-topos, and 𝑈 is an open of 𝑿, then the overcategory 𝑿/𝑈 is an
∞-topos, and the forgetful functor 𝑗! ∶ 𝑿/𝑈 → 𝑿 admits a right adjoint 𝑗∗, which it-
self admits a right adjoint 𝑗∗. The functor 𝑗∗ is a fully faithful geometric morphism. In
this case, we write 𝑿∖𝑈 for the closed complement, which is the full subcategory of 𝑿
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spanned by those objects 𝐹 such that 𝐹 × 𝑈 ≃ 𝑈. Write 𝑖∗ ∶ 𝑿∖𝑈 ↪ 𝑿 for the inclusion.
In this case,𝑿 is a recollement (0.4.3) of𝑿∖𝑈 and𝑿/𝑈 with gluing functor 𝑖∗𝑗∗, viz.,

𝑿 ≃ 𝑿∖𝑈 ∪⃖
𝑖∗𝑗∗ 𝑿/𝑈 .

6.1.2. Let 𝑿 be an∞-topos, and let 𝑖∗ ∶ 𝒁 ↪ 𝑿 and 𝑗∗ ∶ 𝑼 ↪ 𝑿 be geometric mor-
phisms of∞-topoi that exhibit𝑿 as the recollement𝒁 ∪⃖𝑖

∗𝑗∗ 𝑼. Then since 𝑖∗ and 𝑗∗ are
left exact left adjoints, the natural conservative functor

(𝑖∗, 𝑗∗) ∶ 𝑿 → 𝒁 ⊔ 𝑼

preserves and reflects colimits and finite limits. (Here𝒁⊔𝑼 denotes the coproduct of𝒁
and𝑼 in Top∞, which is the product of𝒁 and𝑼 in Cat∞,𝛿1 .) In particular, a morphism
𝑓 in𝑿 is:

→ an effective epimorphism if and only if both 𝑖∗(𝑓) and 𝑗∗(𝑓) are effective epimor-
phisms.

→ 𝑛-truncated for some integer 𝑛 ≥ −2 if and only if both 𝑖∗(𝑓) and 𝑗∗(𝑓) are 𝑛-
truncated (0.4.4).

6.1.3. A recollement of∞-topoi is tantamount to a geometric morphism of∞-topoi
𝑿 → [̃1]. Indeed, if 𝒁 and 𝑼 are ∞-topoi, and 𝜙∶ 𝑼 → 𝒁 is a left exact accessible
functor, then the recollement𝑿 ≔ 𝒁 ∪⃖𝜙 𝑼 is an∞-topos [HA, Proposition A.8.15], and
the essentially unique geometricmorphisms𝒁 → 𝑺 and𝑼 → 𝑺 now induce a geometric
morphism

𝑿 → 𝑺 ∪⃖id𝑺 𝑺 ≃ [̃1] .
In the other direction, given a geometric morphism𝑿 → [̃1], the closed subtopos𝑿0 ≔
{̃0} ×[̃1] 𝑿 and open subtopos𝑿1 ≔ {̃1} ×[̃1] 𝑿 of𝑿 form a recollement of𝑿.

In a strong sense, the entire theory of stratified∞-topoi (Definition 9.2.1) is a gen-
eralisation of this observation.

Since 𝑛-localic and bounded∞-topoi (Definition 5.2.2 & Construction 5.2.9) are
each closed under limits in Top∞, we deduce the following.

6.1.4 Lemma. Let 𝑿 be an∞-topos, and let 𝑖∗ ∶ 𝒁 ↪ 𝑿 and 𝑗∗ ∶ 𝑼 ↪ 𝑿 be geometric
morphisms of∞-topoi that exhibit𝑿 as the recollement 𝒁 ∪⃖𝑖

∗𝑗∗ 𝑼. For any 𝑛 ∈ 𝑵, if𝑿 is
𝑛-localic or bounded, then both 𝒁 and 𝑼 are each 𝑛-localic or bounded, respectively.

6.1.5Warning. We caution, however, that there isn’t a simple converse to Lemma 6.1.4:
it is not the case that the recollement of two bounded∞-topoi is necessarily bounded.
To ensure this, we need a condition on the gluing functor.

6.1.6 Definition. Let 𝒁 and 𝑼 be two bounded∞-topoi, and let 𝜙∶ 𝑼 → 𝒁 be an left
exact accessible functor 𝜙∶ 𝑼 → 𝒁. We say that 𝜙 is a bounded gluing functor if and only
if the recollement𝑿 ≔ 𝒁 ∪⃖𝜙 𝑼 is bounded.

6.1.7 Question. Do bounded gluing functors admit a simple or useful intrinsic charac-
terisation?
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So much for the boundedness of recollements. Let us now turn to coherence (Defi-
nition 5.3.1). We can easily chracterise the coherent objects of a coherent recollement.

6.1.8 Proposition ([DAG XIII, Proposition 2.3.22]). Let 𝑛 ∈ 𝑵, let 𝑿 be an (𝑛 + 1)-
coherent∞-topos, and let 𝑖∗ ∶ 𝒁 ↪ 𝑿 and 𝑗∗ ∶ 𝑼 ↪ 𝑿 be geometric morphisms of∞-
topoi that exhibit𝑿 as the recollement 𝒁 ∪⃖𝑖

∗𝑗∗ 𝑼. If𝑼 is 0-coherent, then an object 𝐹 ∈ 𝑿
is 𝑛-coherent if and only if both 𝑖∗𝐹 and 𝑗∗𝐹 are 𝑛-coherent. In particular, the∞-topoi 𝒁
and 𝑼 are 𝑛-coherent.

6.1.9Warning. We caution again that there isn’t a simple converse to Proposition 6.1.8:
as with boundedness, it is not the case that the recollement of two coherent∞-topoi is
necessarily coherent.

6.1.10 Definition. Let 𝒁 and𝑼 be two coherent∞-topoi, and let 𝜙∶ 𝑼 → 𝒁 be an left
exact accessible functor 𝜙∶ 𝑼 → 𝒁. We say that 𝜙 is a coherent gluing functor if and only
if the recollement𝑿 ≔ 𝒁 ∪⃖𝜙 𝑼 is coherent.

6.1.11. Let 𝒁 and 𝑼 be two coherent ∞-topoi, and let 𝜙∶ 𝑼 → 𝒁 be an left exact
accessible functor. Write 𝑖∗ ∶ 𝒁 ↪ 𝑿 and 𝑗∗ ∶ 𝑼 ↪ 𝑿 for the fully faithful functors
defining the recollement. Then one can show that the gluing functor 𝜙 is coherent if the
following conditions are satisfied.

→ The functor 𝑗∗ is quasicompact in the sense that for any quasicompact object 𝐹 ∈
𝑿, the object 𝑗∗𝐹 ∈ 𝑼 is also quasicompact.

→ For every 𝑛 ∈ 𝑵, every object 𝐹 ∈ 𝑼 admits a family {𝐺𝛼 → 𝐹}𝛼∈𝐴 in which each
𝐺𝛼 is 𝑛-coherent, and the family {𝜙(𝐺𝛼) → 𝜙(𝐹)}𝛼∈𝐴 is a covering in 𝒁.

6.1.12 Construction. Let 𝒁 and 𝑼 be bounded coherent∞-topoi, and let 𝜙∶ 𝑼 → 𝒁
be an left exact accessible functor. Form the recollement

𝑿′ ≔ 𝒁 ∪⃖𝜙 𝑼 ,

and write 𝑖∗ ∶ 𝒁 ↪ 𝑿′ and 𝑗∗ ∶ 𝑼 ↪ 𝑿′ for the closed and open embeddings. Consider
the full subcategory𝑋0 ⊆ 𝑿′ spanned by those objects 𝐹 such that 𝑖∗𝐹 and 𝑗∗𝐹 are each
truncated coherent, so that𝑋0 is the oriented fibre product (0.4.1) in Cat∞,𝛿1 :

𝑋0 = 𝒁coh<∞ ↓𝒁 𝑼coh
<∞ .

Then since𝑋0 ⊂ 𝑿 is closed under finite limits, finite coproducts, and the formation of
geometric realisations of groupoid objects,𝑋0 is an∞-pretopos and the inclusion𝑋0 ↪
𝑿 is a morphism of∞-pretopoi (Definition 5.8.2). Moreover, by (6.1.2) every object of
𝑋0 is truncated and by (0.4.2) the∞-category 𝑋0 is essentially 𝛿0-small, hence 𝑋0 is
a bounded ∞-pretopos (Definition 5.8.7). Consequently, we may form the bounded
coherent∞-topos (Notation 5.8.6)

𝑿 ≔ Sheff(𝑋0) .

By [SAG, Proposition A.6.4.4], the inclusion𝑋0 ↪ 𝑿′ extends (essentially uniquely) to
a comparison geometricmorphism 𝑟∗ ∶ 𝑿′ → 𝑿, which is not in general an equivalence,
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but restricts to an equivalence 𝑟∗ ∶ 𝑿coh
<∞ ⥲ 𝑋0. The geometric morphisms 𝑟∗𝑖∗ and 𝑟∗𝑗∗

are each coherent by construction.We therefore call𝑿 the bounded coherent recollement,
and we write

𝒁 ∪⃖𝜙bc 𝑼 ≔ 𝑿 .

6.1.13 Lemma. Let𝒁 and𝑼 be bounded coherent∞-topoi, and let 𝜙∶ 𝑼 → 𝒁 be an left
exact accessible functor. Then the natural geometric morphism

𝒁 ∪⃖𝑖
∗𝑟∗𝑟∗𝑗∗ 𝑼 → 𝒁 ∪⃖𝜙bc 𝑼

is an equivalence.

Proof. Write𝑿 ≔ 𝒁 ∪⃖𝜙bc 𝑼. The object 𝑗!1𝑼 ∈ 𝒁 ∪⃖
𝜙 𝑼, is the object

(∅𝒁, 1𝑼, ∅𝒁 → 𝜙(1𝑼)) ,

which is an open in𝑿 as well as an object of the∞-pretopos𝑋0 of Construction 6.1.12.
Thus 𝑗∗𝑟∗ restricts to an equivalence

(𝑿/𝑗!1𝑼)
coh
<∞ ⥲ 𝑼coh

<∞ ,

whence the functor 𝑟∗𝑗∗ ∶ 𝑼 → 𝑿/𝑗!(1𝑼) is an equivalence. The truncated coherent ob-
jects of the closed subtopos𝑿∖𝑗!1𝑼 are precisely those of the form (𝐹𝒁, 1𝑼, 𝐹𝒁 → 𝜙(1𝑼))
for some truncated coherent object 𝐹𝒁 of 𝒁. Hence 𝑖∗𝑟∗ restricts to an equivalence

(𝑿∖𝑗!1𝑼)
coh
<∞ ⥲ 𝒁coh<∞ ,

whence the functor 𝑖∗𝑟∗ ∶ 𝒁 → 𝑿∖𝑗!1𝑼 is an equivalence.

6.1.14 Lemma. Let 𝒁, and 𝑼 be bounded coherent∞-topoi, and let 𝜙∶ 𝑼 → 𝒁 be a
bounded coherent gluing functor. Then 𝒁 ∪⃖𝜙 𝑼 is the bounded coherent recollement.

Proof. This follows from Proposition 6.1.8=[DAG XIII, Proposition 2.3.22] combined
with Theorem 5.8.8=[SAG, Theorem A.7.5.3].

The critical point that we use repeatedly in the sequel is the observation that the
bounded coherent recollement depends only upon the restriction of the gluing functor
to truncated coherent objects.More precisely, let𝒁 and𝑼 be bounded coherent∞-topoi,
and let 𝜙∶ 𝑼 → 𝒁 and 𝜙′ ∶ 𝑼 → 𝒁 be two accessible, left exact functors. Let 𝜂∶ 𝜙 → 𝜙′
be a natural transformation. Now 𝜂 induces a functor

𝜂∗ ∶ 𝒁 ∪⃖𝜙 𝑼 → 𝒁 ∪⃖𝜙
′
𝑼

given by the assignment

(𝑧, 𝑢, 𝛼∶ 𝑧 → 𝜙(𝑢)) ↦ (𝑧, 𝑢, 𝜂𝑢𝛼∶ 𝑧 → 𝜙′(𝑢)) .

The functor 𝜂∗ preserves colimits and finite limits; consquently, 𝜂∗ is the left adjoint of
a geometric morphism 𝜂∗. Then since 𝜂∗ restricts to a functor

𝜂∗ ∶ 𝒁coh<∞ ↓𝒁,𝜙 𝑼coh
<∞ ≃ 𝑿coh

<∞ → (𝑿′)coh<∞ ≃ 𝒁coh<∞ ↓𝒁,𝜙′ 𝑼coh
<∞ ,
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i.e., 𝜂∗ preserves truncated coherent objects, 𝜂∗ induces a geometric morphism

𝜂∗ ∶ 𝒁 ∪⃖
𝜙′
bc 𝑼 → 𝒁 ∪⃖

𝜙
bc 𝑼

on bounded coherent recollements.

6.1.15 Proposition. Let 𝒁 and 𝑼 be bounded coherent∞-topoi, and let 𝜙∶ 𝑼 → 𝒁 and
𝜙′ ∶ 𝑼 → 𝒁 be two accessible, left exact functors. Let 𝜂∶ 𝜙 → 𝜙′ be a natural transforma-
tion. If 𝜂|𝑼coh

<∞
is an equivalence, then 𝜂 induces an equivalence

𝒁 ∪⃖𝜙
′

bc 𝑼 ⥲ 𝒁 ∪⃖
𝜙
bc 𝑼 .

6.1.16 Question. The restriction functor Funlex(𝑼, 𝒁) → Funlex(𝑼coh
<∞, 𝒁) is, as a result

of this proposition, fully faithful on bounded coherent gluing functors, but what is the
essential image of the bounded coherent gluing functors? It might be helpful to give a
simple intrinsic characterisation.

6.2 Oriented squares
To speak of oriented pullbacks of ∞-topoi without finding ourselves buried under a
mass of pernicious details (or unproved claims) about double∞-categories or (∞, 2)-
categories, we express the universal property of the lax pullback in simple terms. The
key kind of square we will have to contemplate is the following.

6.2.1 Notation. The data of geometric morphisms 𝑓∗ ∶ 𝑿 → 𝒁, 𝑔∗ ∶ 𝒀 → 𝒁, 𝑝∗ ∶ 𝑾 →
𝑿, and 𝑞∗ ∶ 𝑾 → 𝒀, along with a (not necessarily invertible) natural transformation
𝜏∶ 𝑔∗𝑞∗ → 𝑓∗𝑝∗ will be exhibited by the single square

(6.2.2)
𝑾 𝒀

𝑿 𝒁 .

𝑞∗

𝑝∗ 𝑔∗𝜏⟸
𝑓∗

6.2.3 Warning. Frustratingly, it seems that this convention for writing 2-cells is the op-
posite of what’s written in some of the 1-topos theory literature (but it agrees with much
of the algebro-geometric literature); we therefore emphasise that our 2-morphisms are
natural transformations between the right adjoints.

6.3 Oriented pushouts
The oriented fibre product inCat∞,𝛿1 of a diagram of∞-topoi recovers not the oriented
fibre product in Top∞, but rather the oriented pushout in Top∞. We shall also have to
contemplate the oriented pushout in Topbc

∞.

6.3.1Construction. The∞-categoryTop∞ is tensored over the∞-categoryCat∞,𝛿0 . In-
deed, if𝑾 an∞-topos and𝐶 is a 𝛿0-small∞-category, then the∞-category Fun(𝐶,𝑾)
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is an∞-topos, and the functor 𝐶 → Fun∗(𝑾, Fun(𝐶,𝑾)) that carries an object to the
right adjoint of evaluation induces an equivalence of∞-categories

Fun∗(Fun(𝐶,𝑾), 𝒁) ⥲ Fun(𝐶, Fun∗(𝑾,𝒁))

for any∞-topos 𝒁.
Let𝑾, 𝒁, and 𝑼 be three∞-topoi, and let 𝑝∗ ∶ 𝑾 → 𝒁 and 𝑞∗ ∶ 𝑾 → 𝑼 be two

geometric morphisms. The recollement 𝒁 ∪⃖𝑝∗𝑞
∗
𝑼 can be identified with the oriented

fibre product
𝒁 ↓𝑾 𝑼

formed inCat∞,𝛿1 with respect to the left adjoints𝑝∗ and 𝑞∗.We note that𝒁∪⃖𝑝∗𝑞
∗
𝑼 is an

∞-topos.This∞-topos enjoys the following universal property: a geometric morphism

𝜔(𝑓, 𝑔, 𝜏)∗ ∶ 𝒁 ∪⃖
𝑝∗𝑞∗ 𝑼 → 𝑿

determines and is determined by an oriented square

𝑾 𝑼

𝒁 𝑿 .

𝑞∗

𝑝∗ 𝑔∗𝜏⟸
𝑓∗

This universal property specifies the∞-topos 𝒁 ∪⃖𝑝∗𝑞
∗
𝑼 essentially uniquely. We write

𝒁 ∪⃖𝑾 𝑼 ≔ 𝒁 ∪⃖𝑝∗𝑞
∗
𝑼 ,

and we call this ∞-topos the oriented pushout of 𝑝∗ and 𝑞∗. In this case, we write
𝑖∗ ∶ 𝒁 ↪ 𝒁 ∪⃖

𝑾 𝑼 for the closed embedding and 𝑗∗ ∶ 𝑼 ↪ 𝒁 ∪⃖
𝑾 𝑼 for its open comple-

ment.

6.3.2 Warning. If 𝒁, 𝑼, and 𝑾 are all bounded coherent, and if 𝑝∗ and 𝑞∗ are both
coherent geometric morphisms, Warning 6.1.5 & Warning 6.1.9 still apply: we cannot
ensure that the oriented pushout 𝒁 ∪⃖𝜙 𝑼 is either bounded or coherent (cf. [SGA 4ii,
Exposé VI, §4]).

6.3.3 Construction. Consider an oriented square

𝑾 𝑼

𝒁 𝑿

𝑞∗

𝑝∗ 𝑔∗𝜏⟸
𝑓∗

where all ∞-topoi are bounded coherent and all geometric morphisms are coherent.
For any truncated coherent object 𝐺 ∈ 𝑿, the object 𝜔(𝑓, 𝑔, 𝜏)∗𝐺 is truncated, and the
objects 𝑖∗𝜔(𝑓, 𝑔, 𝜏)∗𝐺 ≃ 𝑓∗𝐺 and 𝑗∗𝜔(𝑓, 𝑔, 𝜏)∗𝐺 ≃ 𝑔∗𝐺 are each truncated coherent,
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whence 𝜔(𝑓, 𝑔, 𝜏)∗ factors through the bounded coherent recollement 𝒁 ∪⃖𝑝∗𝑞
∗

bc 𝑼 (Con-
struction 6.1.12) in an essentially unique manner. Consequently, we write

𝒁 ∪⃖𝑾bc 𝑼 ≔ 𝒁 ∪⃖
𝑝∗𝑞∗
bc 𝑼 ,

and call this∞-topos the bounded coherent oriented pushout.This is the oriented pushout
that is correct in Topbc

∞. Accordingly, one has an equivalence of∞-pretopoi

(𝒁 ∪⃖𝑾bc 𝑼)coh<∞ ≃ 𝒁coh<∞ ↓𝑾coh
<∞
𝑼coh
<∞ .

Please observe that by construction, in the square

𝑾 𝑼

𝒁 𝒁 ∪⃖𝑾bc 𝑼 ,

𝑞∗

𝑝∗ 𝑗∗𝜏⟸

𝑖∗

the natural Beck–Chevalley morphism

𝛽𝜏 ∶ 𝑖∗𝑗∗ → 𝑝∗𝑞∗

becomes an equivalence after restriction to 𝑼coh
<∞. A thorough study of Beck–Chevalley

morphisms will occupy §8.

6.4 Internal homs & path∞-topoi
Oriented fibre products have the universal property that is dual to that of oriented push-
outs. In order to define them, we must identify the cotensor of Top∞ over Cat∞,𝛿0 , or at
least over poSet. Partly in order to define oriented fibre products of∞-topoi now and
partly to define the nerve construction for stratified∞-topoi later (Construction 9.4.1),
we recall some facts about the internal hom in∞-topoi.The first point to bemade about
the internal hom is that it doesn’t always exist.

6.4.1 Recollection. Recall [SAG, Theorem 21.1.6.11] that an∞-topos 𝑾 is exponen-
tiable if and only if the functor−×𝑾∶ Top∞ → Top∞ admits a right adjointMor(𝑾, −).
If𝑾 is exponentiable, then for any∞-topos 𝒁, the points of the∞-topos Mor(𝑾,𝒁)
are precisely the geometric morphisms𝑾 → 𝒁. We thus call Mor(𝑾,𝒁) the mapping
∞-topos. Any compactly generated∞-topos is exponentiable (and in fact even more is
true: see [SAG, Theorem 21.1.6.12]).

In particular, for any spectral topological space 𝑆, then 𝑆 is compactly generated
[HTT, Proposition 6.5.4.4; SAG, Proposition 21.1.7.8], so for and any∞-topos𝒁, there
exists a mapping∞-topos Mor(𝑆, 𝒁). A point 𝑥 ∈ 𝑆 induces a geometric morphism

𝑑𝑥,∗ ∶ Mor(𝑆, 𝒁) → Mor(𝑥, 𝒁) ≃ 𝒁 ,

and the geometric morphism 𝑆 → 𝑺 induces a geometric morphism

𝛥∗ ∶ 𝒁 ≃ Mor(𝑺, 𝒁) → Mor(𝑆, 𝒁) .
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6.4.2 Example. If 𝑃 is a finite poset, then one can identify Mor(𝑃, −) with the unique
limit-preserving endofunctor of Top∞ such that, for any small∞-category 𝐶, one has

Mor(𝑃, Fun(𝐶, 𝑺)) ≃ Fun(Fun(𝑃, 𝐶), 𝑺)

via the natural functor. In particular, if 𝑃 and 𝑄 are finite posets, then

Mor(𝑃, 𝑄) ≃ ̃Fun(𝑃, 𝑄) .

6.4.3 Definition. For any∞-topos 𝑿, the∞-topos Mor([̃1], 𝑿) is called the path∞-
topos of𝑿 [SAG, Definition 21.3.2.3]. We write Path(𝑿) ≔ Mor([̃1], 𝑿).

6.4.4 Lemma. Let 𝑛 ∈ 𝑵, and let 𝒁 be an 𝑛-localic∞-topos. Then the path∞-topos
Path(𝒁) is 𝑛-localic.

Proof. This is a special case of [SAG, Lemma 21.1.7.3].

6.4.5Construction. Let (𝑋, 𝜏) be a pair consisting of an essentially𝛿0-small∞-category
𝑋 that admits all finite limits along with a Grothendieck topology 𝜏. Write𝑿 ≔ Sh𝜏(𝑋)
for the ∞-topos of sheaves (of spaces) on 𝑋 with respect to 𝜏. Then it follows from
[SAG, Lemma 21.1.6.16 & Theorem 21.3.2.5] that Path(𝑿) is naturally equivalent to the
∞-topos Sh𝜏′(Fun(𝛥1,op, 𝑋)), where 𝜏′ is the topology on Fun(𝛥1,op, 𝑋) generated by
the families

{𝑓𝑖 ∶ 𝑣𝑖 → 𝑢}𝑖∈𝐼 ,
where for each 𝑖 ∈ 𝐼, the morphism 𝑓𝑖 ∶ 𝛥1 × 𝛥1,op → 𝑋 is of the form

(6.4.6)
𝑣𝑖,0 𝑣𝑖,1

𝑢0 𝑢1

𝑓𝑖,0 𝑓𝑖,1

in which one of the following holds:

→ the family {𝑓𝑖,0 ∶ 𝑣𝑖,0 → 𝑢0}𝑖∈𝐼 generates a 𝜏-covering sieve, and for any 𝑖 ∈ 𝐼, the
square (6.4.6) is a pullback square;

→ the family {𝑓𝑖,1 ∶ 𝑣𝑖,1 → 𝑢1}𝑖∈𝐼 generates a 𝜏-covering sieve, and for any 𝑖 ∈ 𝐼, the
morphism 𝑓𝑖,0 is an equivalence.

When𝑋 is an∞-pretopos equipped with the effective epimorphism topology, then
Fun(𝛥1,op, 𝑋) is an∞-pretopos and the topology 𝜏′ is the effective epimorphism topol-
ogy.

6.5 Oriented fibre products
We are now ready to construct the oriented fibre product of∞-topoi and to relate it to
the classical oriented fibre product of 1-topoi (Lemma 6.5.13).
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6.5.1 Definition. If 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 are two geometric morphisms of
∞-topoi, then the oriented fibre product is the pullback

𝑿 ×⃖𝒁 𝒀 ≔ 𝑿 ×Mor({̃0},𝒁) Mor([̃1], 𝒁) ×Mor({̃1},𝒁) 𝒀

in Top∞. We write pr1,∗ ∶ 𝑿 ×⃖𝒁 𝒀 → 𝑿 and pr2,∗ ∶ 𝑿 ×⃖𝒁 𝒀 → 𝒀 for the natural geomet-
ric morphisms.

Thus a geometric morphism

𝜓(𝑝, 𝑞, 𝜏)∗ ∶ 𝑾 → 𝑿 ×⃖𝒁 𝒀

determines and is determined by a square (6.2.2). This universal property specifies the
∞-topos𝑿 ×⃖𝒁 𝒀 essentially uniquely.

6.5.2Warning. Please note that this is not the oriented/lax pullback in Cat∞,𝛿1 ; we will
therefore take pains to express clearly where the oriented fibre product is taking place.

Additionally, in this paper, the symbol ×⃖ is only ever used for the oriented fibre prod-
uct in Top∞; we only use the notation 𝑋 ↓𝑍 𝑌 for the oriented fibre product in some
Cat∞,𝛿 (see (0.4.1)).

6.5.3. Please observe that since the exponential functor Path(−)∶ Top∞ → Top∞ is a
right adjoint and limits in Fun(𝛬22,Top∞) are computed pointwise, the functor

Fun(𝛬22,Top∞) → Top∞
given by the formation of the oriented fibre product preserves limits.

6.5.4 Example. When𝒁 = 𝑺, the oriented fibre product reduces to the product inTop∞:

𝑿 ×⃖𝑺 𝒀 ≃ 𝑿 × 𝒀 .

6.5.5. Let 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 be geometric morphisms of∞-topoi. Then
under the identifications𝑿 ≃ 𝑿×⃖𝑺𝑺 and𝒀 ≃ 𝑺×⃖𝑺𝒀, the projections pr1,∗ ∶ 𝑿 ×⃖𝒁 𝒀 → 𝑿
and pr2,∗ ∶ 𝑿 ×⃖𝒁 𝒀 → 𝒀 are equivalent to id𝑿 ×⃖𝛤𝒁,∗𝛤𝒀,∗ and 𝛤𝑿,∗ ×⃖𝛤𝒁,∗ id𝒀, respectively
(Notation 5.1.5).

6.5.6 Example. For any∞-topos 𝑿, the oriented fibre product 𝑿 ×⃖𝑿 𝑿 is canonically
identified with the path∞-topos Path(𝑿).

6.5.7. For any∞-topos𝑬, the functor Fun∗(𝑬, −)op ∶ Top∞ → Cat∞,𝛿1 commutes with
cotensors with Cat∞,𝛿1 (in particular, cotensoring with 𝛥1) and pullbacks of∞-topoi,
hence Fun∗(𝑬, −)op carries oriented fibre products in Top∞ to oriented fibre products
in Cat∞,𝛿1 .

Specalising to the case 𝑬 = 𝑺, we deduce the following.

6.5.8 Lemma. The functor Pt ∶ Top∞ → Cat∞,𝛿1 carries oriented fibre products in Top∞
to oriented fibre products inCat∞,𝛿1 .That is, if𝑓∗ ∶ 𝑿 → 𝒁 and𝑔∗ ∶ 𝒀 → 𝒁 are geometric
morphisms of∞-topoi, then the natural functor

Pt(𝑿 ×⃖𝒁 𝒀) → Pt(𝑿) ↓Pt(𝒁) Pt(𝒀)

is an equivalence.
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6.5.9 Example. There is a canonical geometric morphism

𝜓(pr1, pr2, id)∗ ∶ 𝑿 ×𝒁 𝒀 → 𝑿 ×⃖𝒁 𝒀 .

6.5.10 Example. The∞-topos𝑿 ×⃖𝒁 𝒁 is called the evanescent (or vanishing)∞-topos
of 𝑓∗, and the natural functor

𝛹𝑓,∗ ≔ 𝜓(id𝑿, 𝑓, id)∗ ∶ 𝑿 → 𝑿 ×⃖𝒁 𝒁
is called the nearby cycles functor. Dually, the∞-topos𝒁×⃖𝒁𝒀 is called the coëvanescent
(or covanishing)∞-topos of 𝑔∗, and the natural functor

𝛹𝑔∗ ≔ 𝜓(𝑔, id𝒀, id)∗ ∶ 𝒀 → 𝒁 ×⃖𝒁 𝒀
is called the conearby cycles functor.

One observes that the oriented fibre product can be decomposed into fibre products
in Top∞ involving the evanescent and coëvanescent∞-topoi as follows: one has

𝑿 ×⃖𝒁 𝒀 ≃ (𝑿 ×⃖𝒁 𝒁) ×𝒁 𝒀 and 𝑿 ×⃖𝒁 𝒀 ≃ 𝑿 ×𝒁 (𝒁 ×⃖𝒁 𝒀) ,
and, more symmetrically,

𝑿 ×⃖𝒁 𝒀 ≃ (𝑿 ×⃖𝒁 𝒁) ×Path(𝒁) (𝒁 ×⃖𝒁 𝒀) .
6.5.11 Example. Keep the notations of Definition 6.5.1, and let 𝑝∗ ∶ 𝒁 ↪ 𝒁′ be a fully
faithful geometric morphism. Then 𝑝∗ induces an equivalence of∞-topoi

𝑿 ×⃖𝒁 𝒀 ⥲ 𝑿 ×⃖𝒁′ 𝒀 .

To see this, simply note that𝑿×⃖𝒁𝒀 and𝑿×⃖𝒁′ 𝒀 have the same universal property since
𝑝∗ is fully faithful. Hence for the purpose of computing oriented fibre products, we may
assume that 𝒁 is a presheaf∞-topos.
6.5.12 Lemma. Let 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 be geometric morphisms of∞-topoi. If
𝑿, 𝒀, and 𝒁 are 𝑛-localic (Definition 5.2.2), so is the oriented fibre product𝑿 ×⃖𝒁 𝒀. More
generally, if𝑿, 𝒀, and𝒁 are bounded (Construction 5.2.9), so is the oriented fibre product
𝑿 ×⃖𝒁 𝒀.
Proof. For the first assertion, by Lemma 6.4.4 the oriented fibre product is a limit of 𝑛-
localic∞-topoi, hence 𝑛-localic. The second claim follows from the fact that formation
of the oriented fibre product preserves limits (6.5.3).

The 1-toposic oriented fibre product [44; 45; 53; 63; 69] is related to the oriented
fibre product of corresponding 1-localic∞-topoi via the following easy result.
6.5.13 Lemma. Let 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 be geometric morphisms of 1-topoi,
and write𝑿′, 𝒀′, and 𝒁′ for the corresponding 1-localic∞-topoi associated to𝑿, 𝒀, and
𝒁, respectively. Then the oriented fibre product of 1-topoi𝑿×⃖𝒁𝒀 is canonically equivalent
to the 1-topos of 0-truncated objects of𝑿′ ×⃖𝒁′ 𝒀′.
Proof. Note equivalence of∞-categories 𝜏≤0 ∶ Top1∞ ⥲ Top1 from 1-localic∞-topoi
to 1-topoi (Definition 5.2.2) respects cotensors by the 1-category 𝛥1 (this is obvious
from the site-theoretic description of the path∞-topos of Construction 6.4.5). In light
of the equivalence 𝜏≤0 ∶ Top1∞ ⥲ Top1, the claim now follows from the definitions of
the oriented fibre product in the setting of∞-topoi and 1-topoi.
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6.6 Oriented fibre products & tubular neighbourhoods of manifolds
6.6.1 Notation. Let 𝑋 be a smooth manifold and 𝑖 ∶ 𝑍 ↪ 𝑋 the inclusion of a closed
submanifold.Write𝑈 ≔ 𝑋∖𝑍 and 𝑗∶ 𝑈 ↪ 𝑋 for the inclusion of the open complement
of 𝑍 in 𝑋. Let 𝑝∶ 𝑁𝑍⊂𝑋 ↠ 𝑍 denote the normal bundle of 𝑍, and 𝑧∶ 𝑍 ↪ 𝑁𝑍⊂𝑋 its
zero section. Let 𝑡 ∶ 𝑁𝑍⊂𝑋 ↪ 𝑋 be a choice of tubular neighbourhood of𝑍 in𝑋, so that
𝑡𝑧 = 𝑖.

6.6.2. Keep Notation 6.6.1. Since 𝑝𝑧 = id𝑍, the geometric morphism

𝑝∗ ∶ 𝑁̃𝑍⊂𝑋 → 𝑍

exhibits the∞-topos 𝑁̃𝑍⊂𝑋 as local over 𝑍 with center 𝑧∗. In particular, 𝑝∗ is a shape
equivalence.

6.6.3. Keep Notation 6.6.1, and write 𝜂∶ id𝑍 → 𝑧∗𝑧∗ for the unit of the adjunction
𝑧∗ ⫞ 𝑧∗. Then since 𝑡𝑧 = 𝑖 and 𝑧∗ ≃ 𝑝∗, we see that 𝑡∗𝑧∗𝑧∗ ≃ 𝑖∗𝑝∗. Thus 𝜂 induces a
natural transformation

𝑡∗𝜂∶ 𝑡∗ → 𝑡∗𝑧∗𝑧∗ ≃ 𝑖∗𝑧∗ .
The natural transformation 𝑡∗𝜂 thus provides an oriented square

(6.6.4)
𝑁̃𝑍⊂𝑋 𝑋

𝑍 𝑋 .

𝑡∗

𝑝∗ 𝑡∗𝜂⟸

𝑖∗

The square (6.6.4) induces an essentially unique geometric morphism

𝑓𝑡∗ ∶ 𝑁̃𝑍⊂𝑋 → 𝑍 ×⃖𝑋 𝑋

such that pr1,∗ 𝑓𝑡∗ ≃ 𝑝∗, pr2,∗ 𝑓𝑡∗ ≃ 𝑡∗, and 𝑡∗𝜂 = 𝑓𝑡∗𝜏 where 𝜏∶ pr2,∗ → 𝑖∗ pr1,∗ is the
defining natural transformation. Since 𝑝∗ and pr1,∗ are shape equivalences, 𝑓𝑡∗ is also a
shape equivalence.Moreover, note that since the geometric morphism 𝑡∗ is fully faithful,
the geometric morphism 𝑓𝑡∗ is also fully faithful.

6.7 Generating∞-sites for oriented fibre products
We now describe a generating ∞-site for the oriented fibre product in the setting of
sheaf∞-topoi. This description is adapted from Deligne’s. We employ it to deduce that
the oriented fibre product of bounded coherent∞-topoi and coherent geometric mor-
phisms is coherent (Lemma 6.7.6). We begin with oriented fibre products of presheaf
∞-topoi.

6.7.1 Construction. Let 𝑋, 𝑌, and 𝑍 be three essentially 𝛿0-small∞-categories, each
of which admit finite limits. Let 𝑓∗ ∶ 𝑍 → 𝑋 and 𝑔∗ ∶ 𝑍 → 𝑌 be left exact functors that
induce, via precomposition, geometric morphisms

𝑓∗ ∶ 𝑷(𝑋) → 𝑷(𝑍) and 𝑔∗ ∶ 𝑷(𝑌) → 𝑷(𝑍)
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on∞-categories of presheaves of spaces.
Represent 𝑓∗ and 𝑔∗ as a cartesian fibration 𝑚∶ 𝑀 → 𝛬22, so that the fibres over

the vertices 0, 1, and 2 are 𝑋, 𝑌, and 𝑍, respectively, and 𝑚 is classified by the diagram
𝑋 ← 𝑍 → 𝑌. Now form the∞-category

𝑊⃡(𝑓, 𝑔) ≔ Fun𝛬22(𝛬
2
2,𝑀) ≃ Fun(𝛥1, 𝑋) ×Fun(𝛥{1},𝑋) 𝑍 ×Fun(𝛥{1},𝑌) Fun(𝛥1, 𝑌)

of sections of 𝑚. Let us write 𝐾𝑌 for the class of morphisms 𝜙∶ 𝛥1 × 𝛬22 → 𝑀 in
Fun𝛬22(𝛬

2
2,𝑀) of the form

𝑣𝑋 𝑣𝑍 𝑣𝑌

𝑢𝑋 𝑢𝑍 𝑢𝑌
𝜙𝑋 𝜙𝑍 𝜙𝑌

in which 𝜙𝑋 is an equivalence, and the diagram above exhibits 𝜙𝑌 as the pullback of
𝑔∗𝜙𝑍. Dually, let us write𝐾𝑋 for those morphisms 𝜙 in which 𝜙𝑌 is an equivalence, and
the diagram above exhibits 𝜙𝑋 as the pullback of 𝑓∗𝜙𝑍.

We now define two new∞-categories by inverting these morphisms in the∞-cate-
gorical sense (0.2.1):

𝑊⃖(𝑓, 𝑔) ≔ 𝐾−1𝑌 𝑊⃡(𝑓, 𝑔) and 𝑊(𝑓, 𝑔) ≔ 𝐾−1𝑋 𝑊⃖(𝑓, 𝑔) .

6.7.2. The∞-category 𝑊⃡(𝑓, 𝑔) admits finite limits, which are computed pointwise.The
sets𝐾𝑌 and𝐾𝑋 are stable under composition and pullback. It follows that the classes𝐾𝑌
and 𝐾𝑋 each give rise to right calculi of fractions on 𝑊⃡(𝑓, 𝑔) in the sense of Cisinski’s
book [18, Theorem 7.2.16].

Consequently, the mapping spaces in 𝑊⃖(𝑓, 𝑔) admit a very simple description: for
any objects 𝑢, 𝑣 ∈ 𝑊⃡(𝑓, 𝑔), write

𝐴(𝑢, 𝑣) ⊆ 𝑊⃡(𝑓, 𝑔)/𝑢 ×𝑊⃡(𝑓,𝑔) 𝑊⃡(𝑓, 𝑔)/𝑣

for the full subcategory spanned by those diagrams 𝑢 ← 𝑤 → 𝑣 in which the morphism
𝑢 ← 𝑤 lies in 𝐾𝑌. Then one has a natural weak homotopy equivalence

Map𝑊⃖(𝑓,𝑔)(𝑢, 𝑣) ≃ Ex
∞ 𝐴(𝑢, 𝑣) .

Furthermore, the ∞-categories 𝑊⃖(𝑓, 𝑔) and 𝑊(𝑓, 𝑔) admit finite limits, and the
localisations 𝑊⃡(𝑓, 𝑔) → 𝑊⃖(𝑓, 𝑔) and 𝑊⃖(𝑓, 𝑔) → 𝑊(𝑓, 𝑔) each preserve finite limits
[18, Corollary 7.1.16 & Theorem 7.2.25].

6.7.3 Construction. Keep the notations of Construction 6.7.1. We also have left exact
functors 𝑝∗ ∶ 𝑋 → 𝑊⃡(𝑓, 𝑔) and 𝑞∗ ∶ 𝑌 → 𝑊⃡(𝑓, 𝑔) defined by the assignments

𝑥 ↦ [𝑥 → 1 ← 1] and 𝑦 ↦ [1 → 1 ← 𝑦] .

We also regard these left exact functors as landing in 𝑊⃖(𝑓, 𝑔) and𝑊(𝑓, 𝑔) by composing
with the relevant localisations.
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There exists a section 𝜎∶ 𝑍 → 𝑊⃡(𝑓, 𝑔) of the natural projection that carries 𝑧 to the
cartesian section 𝑓∗(𝑧) → 𝑧 ← 𝑔∗(𝑧). We thus have natural transformations

𝑝∗𝑓∗ 𝜎 𝑞∗𝑔∗𝜃 𝜉

where for any 𝑧 ∈ 𝑍, the components 𝜃𝑧 and 𝜉𝑧 are given by the diagram

𝑓∗(𝑧) 1 1

𝑓∗(𝑧) 𝑧 𝑔∗(𝑧)

1 1 𝑔∗(𝑧) .
!

!

!

!

In particular, note that 𝜃𝑧 ∈ 𝐾𝑋 and 𝜉𝑧 ∈ 𝐾𝑌. Consequently, when we pass to 𝑊⃖(𝑓, 𝑔),
we obtain a natural transformation 𝜃𝜉−1 ∶ 𝑞∗𝑔∗ → 𝑝∗𝑓∗, and this becomes an equiva-
lence upon passage to𝑊(𝑓, 𝑔).

Now the functors 𝑝∗ and 𝑞∗, along with the natural transformation 𝜏∗ ≔ 𝜃𝜉−1, gives
rise to a square

(6.7.4)
𝑷(𝑊⃖(𝑓, 𝑔)) 𝑷(𝑌)

𝑷(𝑋) 𝑷(𝑍) ,

𝑞∗

𝑝∗ 𝑔∗𝜏⟸

𝑓∗

which in turn gives rise to an identification of the oriented fibre product of presheaf
∞-topoi, viz.

𝑷(𝑋) ×⃖𝑷(𝑍) 𝑷(𝑌) ≃ 𝑷(𝑊⃖(𝑓, 𝑔)) .
In the samemanner, one obtains an identification of the oriented fibre product of presheaf
∞-topoi, viz.

𝑷(𝑋) ×𝑷(𝑍) 𝑷(𝑌) ≃ 𝑷(𝑊(𝑓, 𝑔)) .

6.7.5 Construction. Let (𝑋, 𝜏𝑋), (𝑌, 𝜏𝑌), and (𝑍, 𝜏𝑍) be three essentially 𝛿0-small fini-
tary ∞-sites (Definition 5.3.7) with all finite limits. Let 𝑓∗ ∶ 𝑍 → 𝑋 and 𝑔∗ ∶ 𝑍 →
𝑌 be left exact functors, and assume that the two functors 𝑓∗ ∶ 𝑷(𝑋) → 𝑷(𝑍) and
𝑔∗ ∶ 𝑷(𝑌) → 𝑷(𝑍) descend to geometric morphisms

𝑓∗ ∶ 𝑿 ≔ Sh𝜏𝑋(𝑋) → Sh𝜏𝑍(𝑍) ≕ 𝒁 and 𝑔∗ ∶ 𝒀 ≔ Sh𝜏𝑌(𝑌) → Sh𝜏𝑍(𝑍) ≕ 𝒁 .

Define the∞-category 𝑊⃖(𝑓, 𝑔) as in Construction 6.7.1. Then one has a natural equiv-
alence of∞-topoi

𝑿 ×⃖𝒁 𝒀 ≃ Sh𝜏(𝑊⃖(𝑓, 𝑔)) ,
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where 𝜏 is the finitary topology generated by the families {𝜙𝑖 ∶ 𝑣𝑖 → 𝑢}𝑖∈𝐼, in which for
each 𝑖 ∈ 𝐼, the morphism 𝜙𝑖 is the image of a morphism of 𝑊⃡(𝑓, 𝑔) of the form

𝑣𝑖,𝑋 𝑣𝑖,𝑍 𝑣𝑖,𝑌

𝑢𝑋 𝑢𝑍 𝑢𝑌

𝜙𝑖,𝑋 𝜙𝑖,𝑍 𝜙𝑖,𝑌

in which one of the following holds:

→ the family {𝜙𝑖,𝑋 ∶ 𝑣𝑖,𝑋 → 𝑢𝑋}𝑖∈𝐼 generates a 𝜏𝑋-covering sieve, and for any 𝑖 ∈ 𝐼,
the morphisms 𝜙𝑖,𝑍 and 𝜙𝑖,𝑌 are equivalences;

→ the family {𝜙𝑖,𝑌 ∶ 𝑣𝑖,𝑌 → 𝑢𝑌}𝑖∈𝐼 generates a 𝜏𝑌-covering sieve, and for any 𝑖 ∈ 𝐼,
the morphisms 𝜙𝑖,𝑍 and 𝜙𝑖,𝑋 are equivalences.

The topology 𝜏𝑍 is irrelevant here, as we should expect, since 𝑿 ×⃖𝒁 𝒀 ≃ 𝑿 ×⃖𝑷(𝑍) 𝒀
(Example 6.5.11).

Please observe that the finitary topology 𝜏 on𝑊(𝑓, 𝑔) generated by these same fam-
ilies produces the usual (unoriented) fibre product of∞-topoi, viz.,

𝑿 ×𝒁 𝒀 ≃ Sh𝜏(𝑊(𝑓, 𝑔)) .

If each of 𝑋, 𝑌, and 𝑍 is an∞-pretopos, each of the functors 𝑓∗ and 𝑔∗ is an∞-
pretopos morphism, and each of 𝜏𝑋, 𝜏𝑌, and 𝜏𝑍 is the effective epimorphism topology,
then 𝑊⃖(𝑓, 𝑔) and𝑊(𝑓, 𝑔) are each∞-pretopoi, and 𝜏 and 𝜏 are each the effective epi-
morphism topology.

6.7.6 Lemma. Keep the notations of Construction 6.7.5. Then:

(6.7.6.1) The oriented fibre product𝑿 ×⃖𝒁 𝒀 is coherent and locally coherent, and the pro-
jections pr1,∗ and pr2,∗ are coherent.

(6.7.6.2) The pullback 𝑿 ×𝒁 𝒀 is coherent and locally coherent, and the projections pr1,∗
and pr2,∗ are coherent.

Proof. Proposition 5.3.8=[SAG, Proposition A.3.1.3] ensures that the∞-topoi𝑿 ×⃖𝒁 𝒀
and 𝑿 ×𝒁 𝒀 are coherent and locally coherent. Note that (6.7.6.1) follows from Corol-
lary 5.6.8 since pr1,∗ and pr2,∗ are induced by the morphisms of finitary∞-sites

(𝑋, 𝜏𝑋) → (𝑊⃖(𝑓, 𝑔), 𝜏) and (𝑌, 𝜏𝑌) → (𝑊⃖(𝑓, 𝑔), 𝜏) .

The proof of (6.7.6.2) is the same as the proof of (6.7.6.1), replacing the finitary∞-site
(𝑊⃖(𝑓, 𝑔), 𝜏) by (𝑊(𝑓, 𝑔), 𝜏).

In the setting of Lemma 6.7.6, the∞-topos𝑿 ×⃖𝒁 𝒀 is determined by its∞-category
of points in the following sense.
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6.7.7 Proposition. An oriented square

𝑾 𝒀

𝑿 𝒁 ,

𝑞∗

𝑝∗ 𝑔∗𝜏⟸
𝑓∗

of bounded coherent∞-topoi and coherent geometric morphisms is an oriented fibre prod-
uct square if and only if the induced oriented square

Pt(𝑾) Pt(𝒀)

Pt(𝑿) Pt(𝒁) ,

𝑞∗

𝑝∗ 𝑔∗𝜏⟹

𝑓∗

in Cat∞,𝛿1 exhibits Pt(𝑾) as the oriented fibre product Pt(𝑿) ↓Pt(𝒁) Pt(𝒀) (0.4.1).
Proof. This follows from Conceptual Completeness (Theorem 5.11.2=[SAG, Theorem
A.9.0.6]), along with the fact that the functor Pt ∶ Top∞ → Cat∞,𝛿1 preserves oriented
fibre product squares (Lemma 6.5.8).

6.8 Compatibility of oriented fibre products & étale geometric mor-
phisms

We turn to the compatibility of oriented fibre products with étale geometric morphisms.
Our treatment is inspired by Illusie’s discussion [45, Exposé XI, 1.10(b)]. First we prove
what must be a standard fact about the compatibility of ordinary pullbacks and étale
geometric morphisms (Lemma 6.8.2) which we could not locate in the literature.

6.8.1 Notation. Let 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 be geometric morphisms of∞-topoi,
and suppose we are given objects 𝑋 ∈ 𝑿, 𝑌 ∈ 𝒀, and 𝑍 ∈ 𝒁, along with morphisms
𝜙∶ 𝑋 → 𝑓∗(𝑍) and 𝜓∶ 𝑌 → 𝑔∗(𝑍). We write

𝑋 ×𝑍 𝑌 ≔ pr∗1 (𝑋) ×pr∗1 𝑓∗(𝑍) pr
∗
2 (𝑌) ∈ 𝑿 ×𝒁 𝒀

for the pullback of pr∗1 (𝑋) and pr∗2 (𝑌) over pr∗1 𝑓∗(𝑍) ≃ pr∗2 𝑔∗(𝑍) formed in the (un-
oriented) pullback∞-topos𝑿 ×𝒁 𝒀.
6.8.2 Lemma. Keep the notations of Notation 6.8.1.Then the natural geometricmorphism
𝑝∗ ∶ 𝑿/𝑋 ×𝒁/𝑍 𝒀/𝑌 → 𝑿 ×𝒁 𝒀 is étale and 𝑝!(1) ≃ 𝑋 ×𝑍 𝑌.
Proof. First note that the commutative square

(𝑿 ×𝒁 𝒀)/(𝑋×𝑍𝑌) (𝑿 ×𝒁 𝒀)/ pr∗2 (𝑌) 𝒀/𝑌

(𝑿 ×𝒁 𝒀)/ pr∗1 (𝑋)

𝑿/𝑋 𝒁/𝑍
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defines a geometric morphism 𝑒∗ ∶ (𝑿 ×𝒁 𝒀)/(𝑋×𝑍𝑌) → 𝑿/𝑋 ×𝒁/𝑍 𝒀/𝑌. We claim that 𝑒∗
is an equivalence of ∞-topoi. Indeed, for any ∞-topos 𝑬, consider the commutative
square

Fun∗(𝑿/𝑋 ×𝒁/𝑍 𝒀/𝑌, 𝑬) Fun∗(𝑿/𝑋, 𝑬) ×Fun∗(𝒁/𝑍,𝑬) Fun
∗(𝒀/𝑌, 𝑬)

Fun∗(𝑿 ×𝒁 𝒀, 𝑬) Fun∗(𝑿, 𝑬) ×Fun∗(𝒁,𝑬) Fun∗(𝒀, 𝑬) .

∼

∼

Now it follows from Recollection 5.1.6=[HTT, Corollary 6.3.5.6] that the functor

Fun∗(𝑿/𝑋 ×𝒁/𝑍 𝒀/𝑌, 𝑬) → Fun∗(𝑿 ×𝒁 𝒀, 𝑬)

is a left fibration whose fibre over an object ℎ∗ is the space

Map𝑬(1, ℎ∗ pr∗1 (𝑋)) ×Map𝑬(1,ℎ∗ pr∗1 𝑓∗(𝑍)) Map𝑬(1, ℎ∗ pr∗2 (𝑌)) ≃ Map𝑬(1, ℎ∗(𝑋 ×𝑍 𝑌)) .

On the other hand, again byRecollection 5.1.6=[HTT,Corollary 6.3.5.6], the natural
geometric morphism (𝑿 ×𝒁 𝒀)/(𝑋×𝑍𝑌) → 𝑿 ×𝒁 𝒀 induces a left fibration

Fun∗((𝑿 ×𝒁 𝒀)/(𝑋×𝑍𝑌), 𝑬) → Fun∗(𝑿 ×𝒁 𝒀, 𝑬)

whose fibre over ℎ∗ is the space Map𝑬(1, ℎ∗(𝑋×𝑍𝑌)). Thus the geometric morphism 𝑒∗
induces a fibrewise equivalence

Fun∗((𝑿 ×𝒁 𝒀)/(𝑋×𝑍𝑌), 𝑬) → Fun∗(𝑿/𝑋 ×𝒁/𝑍 𝒀/𝑌, 𝑬)

of left fibrations over Fun∗(𝑿 ×𝒁 𝒀, 𝑬).

Now we turn to the compatibility of oriented fibre products and étale geometric
morphisms. We can employ essentially the same reasoning as in Lemma 6.8.2.

6.8.3 Lemma. Let 𝒁 be an∞-topos, and let 𝑍 ∈ 𝒁 be an object. Then the natural geo-
metric morphism 𝑝∗ ∶ Path(𝒁/𝑍) → Path(𝒁) is étale and 𝑝!(1) ≃ pr∗1 (𝑍).

Proof. We have two geometric morphisms

𝑝∗ ∶ Path(𝒁)/ pr∗1 (𝑍) → 𝒁/𝑍 and 𝑞∗ ∶ Path(𝒁)/ pr∗1 (𝑍) → Path(𝒁)/ pr∗2 (𝑍) → 𝒁/𝑍

along with a natural transformation 𝜎∶ 𝑞∗ → 𝑝∗. These furnish us with a geometric
morphism

𝑒∗ ∶ Path(𝒁)/ pr∗1 (𝑍) → Path(𝒁/𝑍)
over Path(𝒁). We claim that 𝑒∗ is an equivalence of∞-topoi.

First, for any∞-topos 𝑬, consider the commutative square

Fun∗(Path(𝒁/𝑍), 𝑬) Fun(𝛥1, Fun∗(𝒁/𝑍, 𝑬))

Fun∗(Path(𝒁), 𝑬) Fun(𝛥1, Fun∗(𝒁, 𝑬)) .

∼

∼
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It follows from [HTT, Corollaries 2.1.2.9 & 6.3.5.6] that the functor

Fun∗(Path(𝒁/𝑍), 𝑬) → Fun∗(Path(𝒁), 𝑬)

is a left fibration whose fibre over ℎ∗ is the space

Map𝑬(1, ℎ∗ pr∗1 (𝑍)) ×Map𝑬(1,ℎ∗ pr∗2 (𝑍)) Map𝑬(1, ℎ∗ pr∗2 (𝑍)) ≃ Map𝑬(1, ℎ∗ pr∗1 (𝑍)) .

Here the map Map𝑬(1, ℎ∗ pr∗1 (𝑍)) → Map𝑬(1, ℎ∗ pr∗2 (𝑍)) is induced by the natural
transformation ̂𝜏 ∶ pr∗1 → pr∗2 adjoint to the defining natural transformation 𝜏∶ pr2,∗ →
pr1,∗ of the path∞-topos Path(𝒁).

On the other hand, by Recollection 5.1.6=[HTT, Corollary 6.3.5.6] for any∞-topos
𝑬, the natural geometric morphism Path(𝒁)/ pr∗1 (𝑍) → Path(𝒁) induces a left fibration

Fun∗(Path(𝒁)/ pr∗1 (𝑍), 𝑬) → Fun∗(Path(𝒁), 𝑬)

whose fibre over ℎ∗ is the space Map𝑬(1, ℎ∗ pr∗1 (𝑍)). Thus for any∞-topos 𝑬, the geo-
metric morphism 𝑒∗ induces a fibrewise equivalence

Fun∗(Path(𝒁)/ pr∗1 (𝑍), 𝑬) → Fun∗(Path(𝒁/𝑍), 𝑬)

of left fibrations over Fun∗(Path(𝒁), 𝑬).

6.8.4 Construction. Let 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 be geometric morphisms of∞-
topoi, and let 𝑋 ∈ 𝑿, 𝑌 ∈ 𝒀, and 𝑍 ∈ 𝒁 be objects, along with morphisms 𝜙∶ 𝑋 →
𝑓∗(𝑍) and 𝜓∶ 𝑌 → 𝑔∗(𝑍). Form the oriented fibre product

𝑿 ×⃖𝒁 𝒀 𝒀

𝑿 𝒁 .

pr2,∗

pr1,∗ 𝑔∗𝜏⟸

𝑓∗

Write𝑋 ×⃖𝑍 𝑌 for the object of𝑿 ×⃖𝒁 𝒀 defined by the pullback square

𝑋 ×⃖𝑍 𝑌 pr∗2 (𝑌)

pr∗1 (𝑋) pr∗2 𝑔∗(𝑍) ,

⌟
pr∗2 (𝜓)

̂𝜏(𝑍)∘pr∗1 (𝜙)

where
̂𝜏 ∶ pr∗1 𝑓∗ → pr∗2 𝑔∗

is the natural transformation adjoint to 𝜏∶ 𝑔∗ pr2,∗ → 𝑓∗ pr1,∗.

Lemma 6.8.3 and Lemma 6.8.2 together now imply the following.

6.8.5 Proposition. Keep the notations of Construction 6.8.4. Then the natural geometric
morphism 𝑝∗ ∶ 𝑿/𝑋 ×⃖𝒁/𝑍 𝒀/𝑌 → 𝑿 ×⃖𝒁 𝒀 is étale and 𝑝!(1) ≃ pr∗1 (𝑋 ×⃖𝑍 𝑌).
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Proof. The claim follows from Lemma 6.8.3 along with Lemma 6.8.2 applied to the top
right, top left, and bottom left cubes in the diagram

𝑿/𝑋 ×⃖𝒁/𝑍 𝒀/𝑌 𝒁/𝑍 ×⃖𝒁/𝑍 𝒀/𝑌 𝒀/𝑌

𝑿 ×⃖𝒁 𝒀 𝒁 ×⃖𝒁 𝒀 𝒀

𝑿/𝑋 ×⃖𝒁/𝑍 𝒁/𝑍 Path(𝒁/𝑍) 𝒁/𝑍

𝑿 ×⃖𝒁 𝒁 Path(𝒁) 𝒁

𝑿/𝑋 𝒁/𝑍 𝒁/𝑍

𝑿 𝒁 𝒁 ,

where the front and back faces of the bottom right cube are oriented fibre product
squares, all other squares are commutative, and the front and back faces of each of the
the top right, top left, and bottom left cubes are pullback squares.

6.8.6 Corollary. Keep the notations of Construction 6.8.4. If the morphism

pr∗2 (𝜓)∶ pr∗2 (𝑌) → pr∗2 𝑔∗(𝑍)

is an equivalence, then we have a natural equivalence

(𝑿 ×⃖𝒁 𝒀)/𝑋×⃖𝑍𝑌 ≃ (𝑿 ×⃖𝒁 𝒀)/ pr∗1 (𝑋) .

6.8.7. Keep the notation of Construction 6.8.4 and assume, in addition, that𝑿,𝒀 and𝒁
are bounded coherent, the geometricmorphisms𝑓∗ and𝑔∗ are coherent, and the objects
𝑋, 𝑌, and 𝑍 are all truncated coherent. Then the object 𝑋 ×⃖𝑍 𝑌 ∈ 𝑿 ×⃖𝒁 𝒀 is the image
of the object of 𝑊⃖(𝑓, 𝑔) (Construction 6.7.5) given by 𝑋 → 𝑍 ← 𝑌 under the Yoneda
embeddingよ ∶ 𝑊⃖(𝑓, 𝑔) ↪ 𝑿 ×⃖𝒁 𝒀.

7 Local∞-topoi & localisations
In this section we generalise the basic theory of what are usually called local geometric
morphisms and local topoi to the setting of∞-topoi [SGA 4ii, Exposé IV, §8; 49, §C.3.6;
50]. The∞-toposic theory follows the 1-toposic story very closely; as such, a number
of items in this section are likely known to experts.24

24Notably, Urs Schreiber has studied local∞-topoi [78, §3.2].
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7.1 Quasi-equivalences
As a precursor, we begin by discussing the∞-toposic generalisation of the notion of a
connected geometric morphism [49, p. 525]. In the homotopical setting, the term ‘con-
nected’ (and its variants) doesn’t seem appropriate. Instead, we elect for the distinct term
quasi-equivalence.

7.1.1 Definition. A geometric morphism𝑓∗ ∶ 𝑿 → 𝒀 of∞-topoi is a quasi-equivalence
if the pullback functor 𝑓∗ is fully faithful.

7.1.2. Every geometric morphism of∞-topoi factors as the composite of a quasi-equiv-
alence followed by an algebraic geometric morphism, and this factorisation is unique up
to (canonical) equivalence [HTT, Proposition 6.3.6.2].

If𝑓∗ is a quasi-equivalence, then𝑓∗ is fully faithful, whencewe deduce the following.

7.1.3 Lemma. Let 𝑓∗ ∶ 𝑿 → 𝒀 be a quasi-equivalence of∞-topoi. Then the canonical
natural transformation 𝛤𝒀,∗ → 𝛤𝑿,∗𝑓∗ is an equivalence (Notation 5.1.5).

7.1.4. If 𝑓∗ ∶ 𝑿 → 𝒀 is a quasi-equivalence of∞-topoi, then by composing the canoni-
cal natural transformation 𝛤𝒀,∗ → 𝛤𝑿,∗𝑓∗ with 𝛤∗𝒀 , Lemma 7.1.3 ensures that the canon-
ical natural transformation

𝛤𝒀,∗𝛤∗𝒀 → 𝛤𝑿,∗𝑓∗𝛤∗𝒀 ≃ 𝛤𝒀,∗𝑓∗𝑓∗𝛤∗𝒀

is an equivalence in Pro(𝑺)op ⊂ Fun(𝑺, 𝑺), so that 𝑓∗ is a shape equivalence (Defini-
tion 5.13.5).

7.1.5. As noted in [HTT, Remark 7.1.6.12], an∞-topos𝑿 has trivial shape if and only
if the geometric morphism 𝑿 → 𝑺 is a quasi-equivalence. However, in general a shape
equivalence of∞-topoi need not be a quasi-equivalence.

7.1.6 Example. Let 𝑋 be a scheme. By [11, Lemma 5.1.2], the natural geometric mor-
phism 𝑋proét → 𝑋ét from the proétale ∞-topos of 𝑋 to the étale ∞-topos of 𝑋 is a
quasi-equivalence, hence a shape equivalence.

7.2 Local∞-topoi
Now we specalise to local∞-topoi.

7.2.1 Definition. A geometric morphism 𝑓∗ ∶ 𝑿 → 𝒀 of∞-topoi is said to be coëssen-
tial if𝑓∗ admits a right adjoint𝑓! ∶ 𝒀 → 𝑿. In this case, the functor𝑓! and its left adjoint
𝑓∗ define a geometric morphism 𝑓! ∶ 𝒀 → 𝑿 called the centre of 𝑓∗.

The next definition generalises what are sometimes called local geometric morphisms
in the 1-topos theory literature [49, §C.3.6; 50]. We instead choose terminology that
syncs with the algebro-geometric terminology for local rings and doesn’t conflict with
other uses of the term ‘local’ in higher category theory.
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7.2.2 Definition. A geometric morphism 𝑓∗ ∶ 𝑿 → 𝒀 of∞-topoi is said to exhibit 𝑿
as local over 𝒀 if 𝑓∗ is both coëssential and a quasi-equivalence.

An ∞-topos 𝑿 is said to be local if 𝑿 is local over 𝑺. In this case we simply call
𝛤! ∶ 𝑺 → 𝑿 the centre of𝑿.

7.2.3. Please observe that a geometric morphism of∞-topoi 𝑓∗ ∶ 𝑿 → 𝒀 exhibits𝑿 as
local over 𝒀 if and only if the functor 𝑓∗ admits a fully faithful right adjoint 𝑓!. Equiv-
alently, 𝑿 is local over 𝒀 if and only if 𝑓∗ admits a section 𝑓! in the (∞, 2)-category
Top∞.

7.2.4. Let𝑿 be an∞-topos. Note that if the global sections functor 𝛤∗ ∶ 𝑿 → 𝑺 admits
a right adjoint 𝛤! ∶ 𝑺 → 𝑿, then 𝛤! is automatically fully faithful, whence𝑿 is local.

Consequently, by the Adjoint Functor Theorem and (7.2.4), an∞-topos 𝑿 is local
if and only if the terminal object 1𝑿 ∈ 𝑿 is completely compact.

7.2.5 Lemma. Let 𝑿 be a local ∞-topos. Then 𝑿 is has homotopy dimension ≤ 0. In
particular,𝑿 has cohomological dimension ≤ 0.

Proof. By [HTT, Lemma 7.2.1.7], it suffices to show that 𝛤𝑿,∗ ∶ 𝑿 → 𝑺 preserves effec-
tive epimorphisms, which follows from the assumption that 𝛤𝑿,∗ is a left adjoint. The
second statement is a consequence of [HTT, Corollary 7.2.2.30].

7.2.6 Definition. Let𝑿 and 𝒀 be local∞-topoi with centres 𝑥∗ and 𝑦∗, respectively. A
geometric morphism 𝑓∗ ∶ 𝑿 → 𝒀 is a local geometric morphism if 𝑓∗𝑥∗ ≃ 𝑦∗. Write
Toploc
∞ ⊂ Top∞ for the (non-full) subcategory whose objects are local ∞-topoi and

whose morphisms are local geometric morphisms.

If 𝑿 is a local∞-topos, then its centre is an initial object of the∞-category Pt(𝑿);
in fact, more is true.

7.2.7 Notation. Let 𝑓∗ ∶ 𝑿 → 𝒀 and 𝑓′∗ ∶ 𝑿′ → 𝒀 be two geometric morphisms of
∞-topoi. Write

Fun𝒀,∗(𝑿,𝑿′) ≔ Fun∗(𝑿,𝑿′) ×Fun∗(𝑿,𝒀) {𝑓∗}

for the∞-category of geometric morphisms𝑿 → 𝑿′ over 𝒀.

7.2.8 Lemma. Let 𝑓∗ ∶ 𝑿 → 𝒀 be a geometric morphism that exhibits 𝑿 as local over 𝒀
with centre 𝑓!. Then 𝑓! is a terminal object of the∞-category Fun𝒀,∗(𝒀,𝑿).

Proof. Let 𝑔∗ ∶ 𝒀 → 𝑿 be a geometric morphism over 𝒀. Then

MapFun𝒀,∗(𝒀,𝑿)(𝑔∗, 𝑓
!) ≃ MapFun𝒀,∗(𝒀,𝒀)(𝑓∗𝑔∗, id𝒀)
≃ MapFun𝒀,∗(𝒀,𝒀)(id𝒀, id𝒀) ≃ ∗ .

Local∞-topoi provide a convenient way to compute stalks as global sections after
pulling back to an appropriate local∞-topos. The following is immediate.

7.2.9 Lemma. Let 𝑝∗ ∶ 𝑾 → 𝑿 be a geometric morphism of∞-topoi where𝑾 is local
with centre 𝑤∗, and let 𝑥∗ ≔ 𝑝∗𝑤∗. Then 𝑥∗ ≃ 𝛤𝑾,∗𝑝∗.
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We shall soon see (Definition 7.3.7 and (7.3.8)) that for any∞-topos 𝑿 and any point
𝑥∗ ∈ Pt(𝑿), there is a geometric morphism 𝑝∗ ∶ 𝑾 → 𝑿 in which𝑾 is local with centre
𝑤∗ and 𝑥∗ ≃ 𝑝∗𝑤∗ (and is, moreover, universal with this property).

Local geometric morphisms are also stable under pullback, though we do not use
this fact in an integral way in the present paper.

7.2.10. Consider a pullback square of∞-topoi

𝑿 ×𝒁 𝒀 𝒀

𝑿 𝒁 ,

⌟
̄𝑔∗

̄𝑓∗

𝑔∗

𝑓∗

where 𝑔∗ exhibits 𝒀 as local over𝒁 with centre 𝑔!. By the universal property of the pull-
back, the identity on𝑿 and the geometric morphism 𝑔!𝑓∗ ∶ 𝑿 → 𝒀 induce a geometric
morphism

̄𝑔! ≔ (id𝑿, 𝑔!𝑓∗) ∶ 𝑿 → 𝑿 ×𝒁 𝒀
such that ̄𝑔∗ ̄𝑔! ≃ id𝑿 and ̄𝑓∗ ̄𝑔! ≃ 𝑔!𝑓∗. Using the universal property of the pullback and
the fact that 𝑔∗ is exhibits𝒀 as local over𝒁, one easily checks that the functor ̄𝑔! is right
adjoint to ̄𝑔∗, so that ̄𝑔∗ exhibits𝑿 ×𝒁 𝒀 as local over𝑿 with centre ̄𝑔!.

7.3 Nearby cycles & localisations
We now show that the evanescent∞-topos (Example 6.5.10) provides a wealth of local
∞-topoi.Then, followingDeligne as well as Peter Johnstone and IekeMoerdijk [50, Def-
inition 3.1], we use the evanescent∞-topos to construct the localisation of an∞-topos
at a point.

A site-theoretic proof of the following result (originally stated without proof by Lau-
mon [53, 3.2]) is given in [45, Exposé XI, Proposition 4.4]. The reliance on sites renders
the proof given in [45, Exposé XI] inadequate in the context of ∞-topoi; luckily the
work of Emily Riehl and Dominic Verity [72] permit us to employ simple 2-categorical
arguments.

7.3.1 Proposition. Let 𝑓∗ ∶ 𝑿 → 𝒁 be a geometric morphism of∞-topoi. Then:

(7.3.1.1) The nearby cycles functor 𝛹𝑓,∗ ∶ 𝑿 → 𝑿 ×⃖𝒁 𝒁 is right adjoint to the projection
pr1,∗ ∶ 𝑿 ×⃖𝒁 𝒁 → 𝑿.

(7.3.1.2) The functor 𝛹𝑓,∗ is fully faithful, hence the geometric morphism pr1,∗ exhibits
𝑿 ×⃖𝒁 𝒁 as local over𝑿 with centre 𝛹𝑓,∗.

Proof. Recall that for any∞-topos 𝑬, the functor Fun∗(𝑬, −)op ∶ Top∞ → Cat∞,𝛿1 car-
ries oriented fibre products in Top∞ to oriented fibre products in Cat∞,𝛿1 (6.5.7). Thus
the proof of [72, Proposition 3.4.6] works perfectly, giving the oriented fibre product in
Top∞ the necessary ‘weak universal property’ (as Riehl and Verity call it) to apply [72,
Lemma 3.5.8], proving both (7.3.1.1) and (7.3.1.2).
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The dual notion to being local over an∞-topos naturally appears as the property
satisfied by the second projection from the coëvanescent∞-topos in the dual to Propo-
sition 7.3.1.

7.3.2 Definition. A geometric morphism 𝑓∗ ∶ 𝑿 → 𝒀 of∞-topoi exhibits𝑿 as colocal
over 𝒀 if 𝑓∗ is a quasi-equivalence and 𝑓∗ admits a left exact left adjoint 𝑓! ∶ 𝑿 → 𝒀. In
this case, the functor𝑓∗ and its left adjoint𝑓! define a geometric morphism𝑓∗ ∶ 𝒀 → 𝑿
called the cocentre of 𝑓∗.

7.3.3. In the setting of 1-topoi, Johnstone [49, Theorem C.3.6.16] uses the term totally
connected for what we call colocal. Again, such lingo is inapt in our context.

7.3.4 Proposition. Let 𝑔∗ ∶ 𝒀 → 𝒁 be a geometric morphism of∞-topoi. Then:

(7.3.1.1) The conearby cycles functor 𝛹𝑔∗ ∶ 𝒀 → 𝒁 ×⃖𝒁 𝒀 is left adjoint to the projection
pr2,∗ ∶ 𝒁 ×⃖𝒁 𝒀 → 𝒀.

(7.3.1.2) The functor 𝛹𝑔∗ ≃ pr∗2 is fully faithful, whence the geometric morphism pr2,∗ ex-
hibits 𝒁 ×⃖𝒁 𝒀 as colocal over 𝒀 with cocentre 𝛹𝑔∗ .

7.3.5. A geometric morphism 𝑓∗ that exhibits an∞-topos as colocal over another will
always satisfy the étale projection formula

𝑓!(𝑓∗(𝑋) ×𝑓∗(𝑍) 𝑌) ≃ 𝑋 ×𝑍 𝑓!(𝑌)

of [HTT, Proposition 6.3.5.11], but the geometric morphism 𝑓∗ will almost never be
étale as 𝑓! is conservative if and only if 𝑓∗ is an equivalence.

7.3.6 Example. For any∞-topos 𝑿 the diagonal functor 𝜓(id𝑿, id𝑿, id)∗ is both the
nearby and conearby cycles functor

𝑿 → 𝑿 ×⃖𝑿 𝑿 ≃ Path(𝑿) .

Combining Propositions 7.3.1 and 7.3.4, we deduce that we have a chain of (left exact)
adjoints

Path(𝑿) 𝑿 .
pr1,∗

pr2,∗

pr∗2

pr∗1

In particular, the geometric morphisms pr1,∗, pr2,∗ ∶ Path(𝑿) → 𝑿 are shape equiva-
lences.

Now we define the localisation of an∞-topos at a point as a evanescent∞-topos;
for this please recall Notation 5.1.5.

7.3.7 Definition. Let 𝑿 be an∞-topos and 𝑥∗ ∶ 𝑺 → 𝑿 a point of 𝑿. The localisation
of𝑿 at 𝑥∗ is the evanescent∞-topos

𝑿(𝑥) ≔ 𝑥 ×⃖𝑿 𝑿 .

We write ℓ𝑥,∗ ∶ 𝑿(𝑥) → 𝑿 for the second projection pr2,∗ ∶ 𝑥 ×⃖𝑿 𝑿 → 𝑿.
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7.3.8. Let 𝑿 be an∞-topos and 𝑥∗ a point of 𝑿. By Proposition 7.3.1, the∞-topos
𝑿(𝑥) is local with centre 𝛹𝑥,∗ ∶ 𝑺 → 𝑿(𝑥). By Lemma 7.2.9, for every object 𝐹 ∈ 𝑿 we
can compute the stalk at 𝑥 via the familiar formula

𝐹𝑥 ≃ 𝛤(𝑿(𝑥); ℓ∗𝑥𝐹) .

7.3.9 Notation. Write Top∞,∗ ≔ Top∞,𝑺/ for the∞-category of pointed∞-topoi. The
assignment (𝑿, 𝑥∗) ↦ 𝑿(𝑥) defines a functor Top∞,∗ → Toploc

∞ .
In the other direction, the assignment 𝑿 ↦ (𝑿, 𝛤!) defines a fully faithful functor

Toploc
∞ ↪ Top∞,∗.

7.3.10 Proposition. Let 𝑿 be a local∞-topos with centre 𝑥∗. Then the geometric mor-
phism ℓ𝑥,∗ ∶ 𝑿(𝑥) → 𝑿 is an equivalence.

Proof. Let 𝜂∶ id𝑿 → 𝑥∗𝛤𝑿,∗ be the unit of the adjunction 𝛤𝑿,∗ ⫞ 𝑥∗. Then the oriented
square

𝑿 𝑿

𝑥 𝑿
𝜂⟸

exhibits𝑿 as the oriented fibre product 𝑥 ×⃖𝑿 𝑿.

7.3.11 Corollary. The fully faithful functorToploc
∞ ↪ Top∞,∗ admits a right adjoint given

by the assignment (𝑿, 𝑥∗) ↦ 𝑿(𝑥).

7.4 Compatibility of oriented fibre products with localisations
In this subsectionwe prove that the formation oriented fibre products is compatible with
localisations of∞-topoi.

7.4.1 Lemma. Let 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 be geometric morphisms of∞-topoi.
Then we have a natural equivalence

Path(𝑿 ×⃖𝒁 𝒀) ≃ Path(𝑿) ×⃖Path(𝒁) Path(𝒀) .

Proof. Since the path∞-topos construction is a right adjoint Top∞ → Top∞, we have
natural equivalences

Path(𝑿 ×⃖𝒁 𝒀) = Path(𝑿 ×𝒁 Path(𝒁) ×𝒁 𝒀)
≃ Path(𝑿) ×Path(𝒁) Path(Path(𝒁)) ×Path(𝒁) Path(𝒀)
= Path(𝑿) ×⃖Path(𝒁) Path(𝒀) .

7.4.2 Proposition. Let 𝑓∗ ∶ (𝑿, 𝑥∗) → (𝒁, 𝑧∗) and 𝑔∗ ∶ (𝒀, 𝑦∗) → (𝒁, 𝑧∗) be morphisms
of pointed∞-topoi, so that there is an induced point

𝑥∗ ×⃖𝑧∗ 𝑦∗ ∶ 𝑺 ≃ 𝑺 ×⃖𝑺 𝑺 → 𝑿 ×⃖𝒁 𝒀 .

Then we have a natural equivalence

(𝑿 ×⃖𝒁 𝒀)(𝑥∗×⃖𝑧∗𝑦∗) ≃ 𝑿(𝑥) ×⃖𝒁(𝑧) 𝒀(𝑦) .
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Proof. Consider the diagram 𝛬22 → Fun(𝛬22,Top∞) defined by the diagram

(7.4.3)

Path(𝑿) Path(𝒁) Path(𝒀)

𝑿 𝒁 𝒀

𝑺 𝑺 𝑺 ,

Path(𝑓∗)

pr1,∗ pr1,∗

Path(𝑔∗)

pr1,∗

𝑓∗ 𝑔∗

𝑥∗ 𝑧∗ 𝑦∗

where we have displayed objects of Fun(𝛬22,Top∞) horizontally, and morphisms in
Fun(𝛬22,Top∞) vertically. First taking the (vertical) limit of the diagram (7.4.3) in

Fun(𝛬22,Top∞)

weobtain the cospan then taking the oriented fibre product of the resulting cospan yields
𝑿(𝑥) ×⃖𝒁(𝑧) 𝒀(𝑦). On the other hand, by Lemma 7.4.1, first forming the oriented fibre prod-
uct then taking limits yields (𝑿 ×⃖𝒁 𝒀)(𝑥∗×⃖𝑧∗𝑦∗). The claim now follows from the fact that
the formation of oriented fibre products commutes with limits (6.5.3).

7.5 Localisation à la Grothendieck–Verdier
In order to get our hands on geometric examples of localised∞-topoi, we give another
description of 𝑿(𝑥) that is akin to the original (1-toposic) definition of the localisation
due to Grothendieck–Verdier [SGA 4ii, Exposé VI, 8.4.2] as a limit over étale neighbour-
hoods of 𝑥∗ in𝑿.

7.5.1 Definition. Let (𝑿, 𝑥∗) be a pointed∞-topos. The∞-category of neighbourhoods
of 𝑥∗ is the pullback

Nbd(𝑥) 𝑺∗

𝑿 𝑺

⌟

𝑥∗

formed in Cat∞,𝛿1 .
By [HTT, Corollary 6.3.5.6 & Remark 6.3.5.7] the∞-category Nbd(𝑥) is equivalent

to the full subcategory of (Top∞,∗)/(𝑿,𝑥∗) spanned by those objects (𝑬, 𝑒∗) → (𝑿, 𝑥∗)
with the property that the geometric morphism 𝑬 → 𝑿 is étale.

Please note that Nbd(𝑥) is an inverse∞-category.

To provide the limit description of the localisation as well as the familiar colimit for-
mula for the stalk at 𝑥, we must speak of limits of diagrams indexed by the (not neces-
sarily 𝛿0-small)∞-category Nbd(𝑥). Happily the exact same cofinality argument given
in [SGA 4ii, Exposé IV, 6.8] works in the setting of higher topoi, showing that Nbd(𝑥)
admits a limit-cofinal 𝛿0-small subcategory.
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7.5.2 Construction. Let 𝑿 be a∞-topos and 𝑥∗ ∈ Pt(𝑿). Then by the Yoneda lemma
the stalk functor 𝑥∗ ∶ 𝑿 → 𝑺 can be computed as the filtered colimit

𝑥∗ ≃ colim
(𝑈,𝑢)∈Nbd(𝑥)op

Map𝑿(𝑈, −) .

The assignment (𝑈, 𝑢) ↦ 𝑿/𝑈 defines a functor 𝐸𝑥 ∶ Nbd(𝑥) → Top∞,/𝑿. More-
over, the natural forgetful functor Top∞,/𝐸𝑥 → Top∞,/𝑿 is a right fibration. We write
lim(𝑈,𝑢)∈Nbd(𝑥)𝑿/𝑈 for the limit in Top∞,/𝑿 (equivalently, in Top∞) of the diagram 𝐸𝑥.

By Recollection 5.1.6=[HTT, Corollary 6.3.5.6], specifying a geometric morphism

𝑿′ → lim
(𝑈,𝑢)∈Nbd(𝑥)

𝑿/𝑈

is equivalent to specifying a geometric morphism 𝑝∗ ∶ 𝑿′ → 𝑿 along with a global
section

𝜎 ∈ 𝛤𝑿′,∗ ( lim
(𝑈,𝑢)∈Nbd(𝑥)

𝑝∗𝑈) ≃ lim
(𝑈,𝑢)∈Nbd(𝑥)

𝛤𝑿′,∗𝑝∗𝑈 .

Since𝑿(𝑥) is the localisation of𝑿 at 𝑥∗, we have a natural equivalence 𝑥∗ ≃ 𝛤𝑿(𝑥),∗ℓ
∗
𝑥

(7.3.8), whence for 𝑈 ∈ 𝑿, we obtain a natural equivalence

lim
(𝑈,𝑢)∈Nbd(𝑥)

𝑥∗(𝑈) ≃ 𝛤𝑿(𝑥),∗ ( lim
(𝑈,𝑢)∈Nbd(𝑥)

ℓ∗𝑥 (𝑈)) .

The global sections 𝑢 ∈ 𝑥∗(𝑈) for (𝑈, 𝑢) ∈ Nbd(𝑥) together define a global section
𝑠 ∈ lim(𝑈,𝑢)∈Nbd(𝑥) 𝑥∗(𝑈). This furnishes us with a geometric morphism

𝑔∗ ∶ 𝑿(𝑥) → lim
(𝑈,𝑢)∈Nbd(𝑥)

𝑿/𝑈

over𝑿.

7.5.3 Proposition. Let 𝑿 be an∞-topos and 𝑥∗ a point of 𝑿. Then the geometric mor-
phism 𝑔∗ ∶ 𝑿(𝑥) → lim(𝑈,𝑢)∈Nbd(𝑥)𝑿/𝑈 of Construction 7.5.2 is an equivalence.

Proof. We wish to show that 𝑔∗ ∶ 𝑿(𝑥) → lim(𝑈,𝑢)∈Nbd(𝑥)𝑿/𝑈 induces an equivalence

Top∞,/𝑿(𝑥) ⥲ Top∞,/𝐸𝑥 .

Since both projections onto Top∞,/𝑿 are right fibrations, we are reduced to showing
that for every object 𝑝∗ ∶ 𝑿′ → 𝑿 of Top∞,/𝑿 the induced map on fibres of these right
fibrations is an equivalence. By Recollection 5.1.6=[HTT, Corollary 6.3.5.6] the fibre of
the right fibration Top∞,/𝐸𝑥 → Top∞,/𝑿 over 𝑝∗ ∶ 𝑿′ → 𝑿 is given by

{𝑝∗} ×Top∞,/𝑿 Top∞,/𝐸𝑥 ≃ lim
(𝑈,𝑢)∈Nbd(𝑥)

𝛤𝑿′,∗𝑝∗(𝑈) ,

On the other hand,

{𝑝∗} ×Top∞,/𝑿 Top∞,/𝑿(𝑥) ≃ MapFun∗(𝑿′,𝑿)(𝑝∗, 𝑥∗𝛤𝑿′,∗) ≃ MapFun(𝑿,𝑺)(𝑥∗, 𝛤𝑿′,∗𝑝∗) .
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By the colimit formula for the stalk (Construction 7.5.2), we have natural equivalences

MapFun(𝑿,𝑺)(𝑥∗, 𝛤∗𝑝∗) ≃ MapFun(𝑿,𝑺) ( colim
(𝑈,𝑢)∈Nbd(𝑥)op

Map𝑿(𝑈, −), 𝛤𝑿′,∗𝑝∗)

≃ lim
(𝑈,𝑢)∈Nbd(𝑥)

𝛤𝑿′,∗𝑝∗(𝑈) .

Unwinding definitions, we see that the induced map on fibres

{𝑝∗} ×Top∞,/𝑿 Top∞,/𝑿(𝑥) → {𝑝∗} ×Top∞,/𝑿 Top∞,/𝐸𝑥

is an equivalence.

7.6 Coherence of localisations
In this subsection we use the Grothendieck–Verdier description of the localisation to
deduce that 𝑿(𝑥) is bounded coherent when 𝑿 is. Please note that this is not automatic
from Lemma 6.7.6, as points of bounded coherent ∞-topoi need not be coherent in
general.

7.6.1. Let 𝑓∶ 𝑈 → 𝑉 be a morphism between coherent objects of an∞-topos𝑿. Then
the geometric morphism 𝑓∗ ∶ 𝑿/𝑈 → 𝑿/𝑉 is coherent.

7.6.2 Lemma. Let𝑿 be a bounded∞-topos and𝑈 ∈ 𝑿<∞ a truncated object of𝑿. Then
the over∞-topos𝑿/𝑈 is bounded.

Proof. Indeed, if 𝑈 is 𝑛-truncated, and if 𝑿 is 𝑁-localic for some 𝑁 ≥ 𝑛, then 𝑿/𝑈 in
𝑁-localic as well. The desired result now follows by exhibiting 𝑿 as an inverse limit of
localic∞-topoi.

7.6.3. Let 𝑿 be a bounded coherent∞-topos and 𝑥∗ a point of 𝑿. Then the full sub-
category Nbdcoh

<∞(𝑥) ⊂ Nbd(𝑥) consisting of those neighbourhoods (𝑈, 𝑢) such that 𝑈
is a truncated coherent object of 𝑿 is limit-cofinal in Nbd(𝑥). Thus Proposition 7.5.3,
(7.6.1), and Lemma 7.6.2 together show that

𝑿(𝑥) ≃ lim
(𝑈,𝑢)∈Nbdcoh

<∞(𝑥)
𝑿/𝑈

is an inverse limit in Top∞ of bounded coherent∞-topoi and coherent geometric mor-
phisms.

From Corollary 5.9.3=[SAG, Corollary A.8.3.3] we deduce the following.

7.6.4 Lemma. Let 𝑿 be a bounded coherent ∞-topos and 𝑥∗ a point of 𝑿. Then the
localisation 𝑿(𝑥) is bounded coherent and the geometric morphism ℓ𝑥,∗ ∶ 𝑿(𝑥) → 𝑿 is
coherent.
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7.7 Geometric examples of localisations
7.7.1 Example ([50, Example 1.2(a)]). Let 𝑋 be a topological space and 𝑠 ∈ 𝑋 a special
point in the sense that the only open set of𝑋 containing 𝑠 is𝑋 itself.Then it is immediate
that the functor𝑋 → 𝑺 given by taking the stalk at 𝑠 is equivalent to the global sections
functor, so the∞-topos𝑋 is local with centre 𝑥∗ ∶ 𝑺 → 𝑋.

7.7.2 Subexample ([SGA 4ii, Exposé VI, 8.4.6]). In particular, when 𝑋 = Spec(𝐴)zar
is the Zariski space of the spectrum of a local ring 𝐴, and 𝑠 = m is the maximal ideal,
we deduce that the Zariski∞-topos of 𝐴 is local. Moreover, if 𝜙∶ 𝐴 → 𝐴′ is a local
homomorphism of local rings, then the induced geometric morphism of Zariski ∞-
topoi Spec(𝐴′)zar → Spec(𝐴)zar is a local geometric morphism.

7.7.3 Example ([SGA 4ii, Exposé VI, 8.4.4]). Let 𝑋 be a scheme and 𝑥 ∈ 𝑋. Then the
localisation of the Zariski∞-topos of𝑋 at the point 𝑥 is the Zariski∞-topos of 𝑂𝑋,𝑥.

7.7.4 Example. Let𝑋 be a scheme, and let 𝑥 → 𝑋 be a point with image 𝑥0 ∈ 𝑋zar. Sup-
pose 𝑥 is a geometric point in the sense that 𝜅(𝑥) is a separable closure of 𝜅(𝑥0). Then the
localisation of the étale∞-topos of 𝑋 at 𝑥 is the étale∞-topos of the strict localisation
𝑋(𝑥) ≔ Spec𝑂𝑠ℎ𝑋,𝑥0 , viz.,

(𝑋ét)(𝑥) ≃ (𝑋(𝑥))ét .
More generally, for any point 𝑥 → 𝑋, the evanescent∞-topos 𝑥ét ×⃖𝑋ét

𝑋ét can be
identified with the étale∞-topos of 𝑋(𝑥) ≔ Spec𝐴, where 𝐴 ⊇ 𝑂ℎ𝑋,𝑥 is the unramified
extension of the henselisation whose residue field is the separable closure of 𝜅(𝑥0) in
𝜅(𝑥).

8 Beck–Chevalley conditions & gluing squares
The goal of this section is to prove a basechange result for oriented fibre products of
bounded coherent∞-topoi (Theorem 8.1.4). Our result provides a nonabelian refine-
ment of a basechange result of Ofer Gabber [45, Exposé XI,Théorème 2.4] as well as one
ofMoerdijk and Jacob Vermeulen [63,Theorem 2(i)].This basechange result is essential
to our décollage approach to stratified higher topoi in §9.

8.1 TheBeck–Chevalley transformation&Beck–Chevalley conditions
We begin by recalling the Beck–Chevalley natural transformation associated to an ori-
ented square of∞-topoi.

8.1.1 Definition. Consider an oriented square of∞-topoi and geometric morphisms:

(8.1.2)
𝑾 𝒀

𝑿 𝒁

𝑞∗

𝑝∗ 𝑔∗𝜏⟸
𝑓∗
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and the corresponding geometricmorphism𝜓(𝑝, 𝑞, 𝜏)∗ ∶ 𝑾 → 𝑿 ×⃖𝒁 𝒀ofDefinition 6.5.1.
Write 𝜂𝑞 ∶ id𝒀 → 𝑞∗𝑞∗ for the unit and 𝜀𝑓 ∶ 𝑓∗𝑓∗ → id𝑿 for the counit. The Beck–
Chevalley transformation is the composition

𝛽𝜏 ∶ 𝑓∗𝑔∗ 𝑓∗𝑔∗𝑞∗𝑞∗ 𝑓∗𝑓∗𝑝∗𝑞∗ 𝑝∗𝑞∗ .
𝑓∗𝑔∗𝜂𝑞 𝑓∗𝜏𝑞∗ 𝜀𝑓𝑝∗𝑞∗

We say that the square (8.1.2) – or equivalently the geometric morphism 𝜓(𝑝, 𝑞, 𝜏)∗
– satisfies the:

→ Beck–Chevalley condition if the natural transformation 𝛽𝜏 is an equivalence.

→ bounded Beck–Chevalley condition if for every truncated object 𝐹 ∈ 𝒀<∞, the mor-
phism 𝛽𝜏(𝐹)∶ 𝑓∗𝑔∗(𝐹) → pr1,∗ pr

∗
2 (𝐹) is an equivalence in𝑿.

8.1.3. Please observe that given oriented squares of∞-topoi

𝑿 𝒀 𝒁

𝑿′ 𝒀′ 𝒁′ ,
⟸𝜎 ⟸𝜏

the Beck–Chevalley morphism of the outer oriented rectangle is equivalent to natural
transformation given by the composite of the Beck–Chevalley morphisms

𝑿 𝒀 𝒁

𝑿′ 𝒀′ 𝒁′ .

⟸
𝛽𝜎

⟸
𝛽𝜏

We now are now prepared to state our basechange result.

8.1.4 Theorem. Let 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 be coherent geometric morphisms
between bounded coherent∞-topoi. Then the oriented fibre product square

(8.1.5)
𝑿 ×⃖𝒁 𝒀 𝒀

𝑿 𝒁

pr2,∗

pr1,∗ 𝑔∗𝜏⟸

𝑓∗

satisfies the bounded Beck–Chevalley condition.

By passing to 1-localic∞-topoi inTheorem 8.1.4, we deduceMoerdijk and Vermeulen’s
1-toposic Beck–Chevalley condition [63, Theorem 2(i)].

91



8.1.6 Corollary. Let 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 be coherent geometric morphisms
between coherent 1-topoi. Then the oriented fibre product square of 1-topoi

𝑿 ×⃖𝒁 𝒀 𝒀

𝑿 𝒁

pr2,∗

pr1,∗ 𝑔∗𝜏⟸

𝑓∗

satisfies the Beck–Chevalley condition – i.e., the Beck–Chevalley natural transformation
𝑓∗𝑔∗ → pr1,∗ pr

∗
2 is an isomorphism.

Proof. Write𝑿′, 𝒀′, and𝒁′ for the 1-localic∞-topoi associated to𝑿, 𝒀, and𝒁, respec-
tively. Combining the equivalence between coherent 1-localic ∞-topoi and coherent
1-topoi (Proposition 5.6.11) with Theorem 8.1.4 shows that the oriented fibre product
square of∞-topoi

𝑿′ ×⃖𝒁′ 𝒀′ 𝒀′

𝑿′ 𝒁′
⟸

satisfies the bounded Beck–Chevalley condition. We conclude by restricting to 0-trun-
cated objects and applying Lemma 6.5.13.

In the setting of derived categories, we also immediately deduce Gabber’s result [45,
Exposé XI, Théorème 2.4].

The proof of Theorem 8.1.4 requires a number of preliminaries that will occupy the
next few subsections. Our proof is essentially a reinterpretation of the proof of Gabber’s
result that Luc Illusie presents in [45, Exposé XI, Théorème 2.4].

8.2 Examples of the Beck–Chevalley condition
In this subsection we provide a few examples of (oriented) squares that are easily seen
to satisfy the Beck–Chevalley condition. None of these examples are used in the sequel.
The first two examples are due to an observation of Gabber [45, Exposé XI, Remarque
4.9].

8.2.1 Example. Let 𝑓∗ ∶ 𝑿 → 𝒁 be a geometric morphism of ∞-topoi. Then from
the equivalence 𝛹∗𝑓 ≃ pr1,∗ ∶ 𝑿 ×⃖𝒁 𝒁 → 𝑿 and the fact that pr2,∗𝛹𝑓,∗ ≃ 𝑓∗ (Proposi-
tion 7.3.1), we have equivalences

pr1,∗ pr
∗
2 ≃ 𝛹∗𝑓 pr∗2 ≃ 𝑓∗ .

From this we deduce the Beck–Chevalley condition for the evanescent∞-topos square

𝑿 ×⃖𝒁 𝒁 𝒁

𝑿 𝒁 .

pr2,∗

pr1,∗ ⟸

𝑓∗
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8.2.2 Example. Dually, let 𝑔∗ ∶ 𝒀 → 𝒁 be a geometric morphism of∞-topoi. From
Proposition 7.3.4 we see that the defining oriented square of the coëvanescent∞-topos
𝒁 ×⃖𝒁 𝒀 satisfies the Beck–Chevalley condition.

As noted by Johnstone–Moerdijk [50, Remark 2.5], pullbacks along local geometric
morphisms also satisfy the Beck–Chevalley condition.

8.2.3 Example. Consider a pullback square of∞-topoi

(8.2.4)
𝑿 ×𝒁 𝒀 𝒀

𝑿 𝒁 ,

⌟
̄𝑔∗

̄𝑓∗

𝑔∗

𝑓∗

where 𝑔∗ exhibits 𝒀 as local over 𝒁 with centre 𝑔!. Then by (7.2.10) the geometric mor-
phism ̄𝑔∗ exhibits 𝑿 ×𝒁 𝒀 as local over 𝑿 and the center ̄𝑔! of ̄𝑔∗ satisfies ̄𝑓∗ ̄𝑔! ≃ 𝑔!𝑓∗.
We have adjunctions

𝑓∗𝑔∗ ⫞ 𝑔!𝑓∗ and ̄𝑔∗ ̄𝑓∗ ⫞ ̄𝑓∗ ̄𝑔! ,
so the equivalence ̄𝑓∗ ̄𝑔! ≃ 𝑔!𝑓∗ shows that 𝑓∗𝑔∗ ≃ ̄𝑔∗ ̄𝑓∗, from which we deduce the
Beck–Chevalley condition for the square (8.2.4).

8.2.5 Example. Let 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 be geometric morphisms of∞-topoi.
And decompose the oriented fibre product𝑿 ×⃖𝒁 𝒀 as an iterated pullback

(8.2.6)

𝑿 ×⃖𝒁 𝒀 𝒁 ×⃖𝒁 𝒀 𝒀

𝑿 ×⃖𝒁 𝒁 Path(𝒁) 𝒁

𝑿 𝒁 𝒁 .

⌟ ⌟
𝑔∗

⌟
⟸

𝑓∗

It follows from Example 8.2.3 that local geometric morphisms are proper [HTT, Defi-
nition 7.3.1.4]. Assume that 𝑔∗ is a proper geometric morphism. Then by applying Ex-
ample 8.2.1 to the lower right square of (8.2.6), Examples 7.3.6 and 8.2.3 to the lower
left square of (8.2.6), and the properness of 𝑔∗ to the top squares of (8.2.6), we deduce
that the three pullback squares in (8.2.6) and the oriented square all satisfy the Beck–
Chevalley condition, and that pr1,∗ ∶ 𝑿 ×⃖𝒁 𝒀 → 𝑿 is a proper geometric morphism.

8.3 Localisations & the bounded Beck–Chevalley condition
In this subsection we prove the following bounded Beck–Chevalley condition for locali-
sations of bounded coherent∞-topoi.
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8.3.1 Proposition. Let𝑝∗ ∶ 𝑾 → 𝑿 be a coherent geometric morphism between bounded
coherent∞-topoi. Then for any point 𝑥∗ of𝑿, the pullback square

𝑺 ×⃖𝑿𝑾 𝑾

𝑿(𝑥) 𝑿

⌟
𝑝∗

ℓ𝑥,∗

satisfies the bounded Beck–Chevalley condition.

To do so, we use the Grothendieck–Verdier description of the localisation (Proposi-
tion 7.5.3) and the (obvious) fact that pullbacks along étale geometricmorphisms satisfy
Beck–Chevalley condition to reduce the problem to a general result on inverse limits
(Proposition 8.3.5).

8.3.2 Lemma. Let 𝑓∗ ∶ 𝑬 → 𝑿 and 𝑝∗ ∶ 𝑾 → 𝑿 be geometric morphisms of∞-topoi. If
𝑓∗ is étale, then the pullback square

𝑬 ×𝑿𝑾 𝑾

𝑬 𝑿

⌟
𝑝∗

𝑓∗

satisfies the Beck–Chevalley condition.

We fix some useful notation for the next few results.

8.3.3 Notation. Let 𝑾,𝑿∶ 𝐼 → Top∞ be diagrams of∞-topoi. For each morphism
𝛼∶ 𝑗 → 𝑖 in 𝐼, we write

𝑒𝛼,∗ ∶ 𝑾𝑗 →𝑾𝑖 and 𝑓𝛼,∗ ∶ 𝑿𝑗 → 𝑿𝑖

for the transition morphisms. For each 𝑖 ∈ 𝐼, we write

𝜉𝑖,∗ ∶ lim𝑖∈𝐼 𝑾𝑖 →𝑾𝑖 and 𝜋𝑖,∗ ∶ lim𝑖∈𝐼 𝑿𝑖 → 𝑿𝑖

for the projections. In addition, we assume that for each𝛼∶ 𝑗 → 𝑖 in 𝐼 and integer 𝑛 ≥ −2,
the functors

𝑒𝛼,∗ ∶ 𝑾𝑗,≤𝑛 →𝑾𝑖 and 𝑓𝛼,∗ ∶ 𝑿𝑗,≤𝑛 → 𝑿𝑖
preserve filtered colimits.

8.3.4. Most importantly, the assumptions of Notation 8.3.3 are valid for inverse systems
of bounded coherent∞-topoi and coherent geometric morhisms Corollary 5.10.4.

8.3.5 Proposition. Keep the assuptions of Notation 8.3.3. Let 𝑝∶ 𝑾 → 𝑿 a natural trans-
formation, each of whose components 𝑝𝑖,∗ ∶ 𝑾𝑖 → 𝑿𝑖 has the property that the functor
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𝑝𝑖,∗ ∶ 𝑾𝑖,≤𝑛 → 𝑿𝑖 preserves filtered colimits for each integer 𝑛 ≥ −2. If for each morphism
𝛼∶ 𝑗 → 𝑖 in 𝐼 the square

(8.3.6)

𝑾𝑗 𝑾𝑖

𝑿𝑗 𝑿𝑖

𝑝𝑗,∗

𝑒𝛼,∗

𝑝𝑖,∗

𝑓𝛼,∗

satisfies the bounded Beck–Chevalley condition, then for each 𝑖 ∈ 𝐼 the induced square

lim𝑖∈𝐼𝑾𝑖 𝑾𝑖

lim𝑖∈𝐼𝑿𝑖 𝑿𝑖

lim𝑖∈𝐼 𝑝𝑖,∗

𝜉𝑖,∗

𝑝𝑖,∗

𝜋𝑖,∗

satisfies the bounded Beck–Chevalley condition.

Proof. For each 𝑖 ∈ 𝐼, the forgetful functor 𝐼/𝑖 → 𝐼 is limit-cofinal [HTT, Example
5.4.5.9 & Lemma 5.4.5.12], so we may without loss of generality assume that 𝐼 admits a
terminal object 1 and that 𝑖 = 1. Writing 𝑞∗ ≔ lim𝑖∈𝐼 𝑝𝑖,∗, we see that we have reduced
to showing that the square

(8.3.7)
lim𝑖∈𝐼𝑾𝑖 𝑾1

lim𝑖∈𝐼𝑿𝑖 𝑿1

𝑞∗

𝜉1,∗

𝑝1,∗

𝜋1,∗

satisfies the bounded Beck–Chevalley condition.
Inverse limits in Top∞ are computed in Cat∞,𝛿1 (Theorem 5.1.9=[HTT, Theorem

6.3.3.1]), so an object of the limit of a diagram𝒀∶ 𝐼 → Top∞ is specified by a compatible
system {𝑈𝑖}𝑖∈𝐼 of objects 𝑈𝑖 ∈ 𝒀𝑖 along with, for each 𝛼∶ 𝑗 → 𝑖 in 𝐼, an equivalence
𝜙𝛼 ∶ 𝑔𝛼,∗(𝑈𝑗) ≃ 𝑈𝑖, where 𝑔𝛼,∗ ∶ 𝒀𝑗 → 𝒀𝑖 is the transition morphism. Thus for 𝑈 ∈ 𝑾1
we have

𝑞∗𝜉∗1 (𝑈) ≃ {𝑝𝑖,∗𝜉𝑖,∗𝜉∗1 (𝑈)}𝑖∈𝐼 ,
and

𝜋∗1𝑝1,∗(𝑈) ≃ {𝜋𝑖,∗𝜋∗1𝑝1,∗(𝑈)}𝑖∈𝐼 .
It therefore suffices to show that for each 𝑖 ∈ 𝐼, the natural morphism

𝜋𝑖,∗𝛽∶ 𝜋𝑖,∗𝜋∗1𝑝1,∗ → 𝜋𝑖,∗𝑞∗𝜉∗1 ≃ 𝑝𝑖,∗𝜉𝑖,∗𝜉∗1

induced by the Beck–Chevalley morphism 𝛽∶ 𝜋∗1𝑝1,∗ → 𝑞∗𝜉∗1 is an equivalence when
restricted to𝑾1,<∞.
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For 𝑖 ∈ 𝐼, we simply write 𝑓𝑖,∗ ≔ 𝑓𝛼,∗ and 𝑒𝑖,∗ ≔ 𝑒𝛼,∗ if 𝛼∶ 𝑖 → 1. Note that for every
truncated object𝑊 ∈ 𝑾1,<∞ we have equivalences

𝜋𝑖,∗𝜋∗1𝑝1,∗(𝑈) ≃ 𝜋𝑖,∗𝜋∗𝑖 𝑓∗𝑖 𝑝1,∗(𝑈)
≃ colim
𝛼∈(𝐼/𝑖)op
𝑓𝛼,∗𝑓∗𝛼 𝑓∗𝑖 𝑝1,∗(𝑈) (Corollary 5.13.13)

⥲ colim
[𝛼 ∶ 𝑗→𝑖]∈(𝐼/𝑖)op

𝑓𝛼,∗𝑝𝑗,∗𝑒∗𝛼𝑓∗𝑖 (𝑈)

≃ colim
𝛼∈(𝐼/𝑖)op
𝑝𝑖,∗𝑒𝛼,∗𝑒∗𝛼𝑒∗𝑖 (𝑈)

in which the third equivalence is by assumption. In addition, Corollary 5.13.13 and the
fact that 𝜉∗𝑖 𝑓∗𝑖 ≃ 𝜉∗1 give equivalences

𝑝𝑖,∗ ( colim𝛼∈(𝐼/𝑖)op
𝑒𝛼,∗𝑒∗𝛼𝑒∗𝑖 (𝑈)) ≃ 𝑝𝑖,∗𝜉𝑖,∗𝜉∗𝑖 𝑓∗𝑖 ≃ 𝑝𝑖,∗𝜉𝑖,∗𝜉∗1 (𝑈) .

for every truncated object 𝑈 ∈ 𝑾1,<∞. By assumption 𝑝𝑖,∗ preserves filtered colimits
of uniformly truncated objects. As left exact functors preserve 𝑛-truncatedness for all
𝑛 ≥ −2, we see that for every truncated object 𝑈 of𝑾1, the natural morphism

colim
𝛼∈(𝐼/𝑖)op
𝑝𝑖,∗𝑒𝛼,∗𝑒∗𝛼𝑒∗𝑖 (𝑈) → 𝑝𝑖,∗ ( colim𝛼∈(𝐼/𝑖)op

𝑒𝛼,∗𝑒∗𝛼𝑒∗𝑖 (𝑈))

is an equivalence, which provides an equivalence

(8.3.8) 𝜋𝑖,∗𝜋∗1𝑝1,∗(𝑈) ⥲ 𝑝𝑖,∗𝜉𝑖,∗𝜉∗1 (𝑈) .

To conclude, note that the equivalence (8.3.8) is homotopic to 𝜋1,∗𝛽(𝑈).

Proof of Proposition 8.3.1. Combine Lemma 8.3.2 and Proposition 8.3.5, the hypotheses
of which are valid by (7.6.3) and Corollary 5.10.4 (cf. Corollary 5.9.3=[SAG, Corollary
A.8.3.3]).

8.4 Functoriality of oriented fibre products in oriented diagrams
In this subsection we discuss the functoriality of the oriented fibre product in oriented
diagrams of cospans, and we use this additional functoriality to construct some unex-
pected extra adjoints to the second projection from the oriented fibre product (Proposi-
tion 8.4.6). In nice cases, this provides away to check that the Beck–Chevalleymorphism
becomes an equivalence after passing to stalks (Lemma 8.4.9).

8.4.1. Suppose that we are given a diagram of∞-topoi

𝑿 𝒁 𝒀

𝑿′ 𝒁′ 𝒀′ .

𝑓∗

𝑥∗ 𝑧∗
𝜂
⟸

𝑔∗

𝑦∗

𝑓′∗ 𝑔′∗

𝜃⟸
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Then by the universal property of the oriented fibre product𝑿′ ×⃖𝒁′ 𝒀′, the diagram

𝑿 ×⃖𝒁 𝒀 𝒀

𝒀′

𝑿 𝒁

𝑿′ 𝒁′

pr1,∗

pr2,∗

𝑦∗

𝑔∗𝜏
⟸

𝑔′∗

𝜃
⟸

𝑓∗

𝑥∗
𝑧∗

𝜂
⟸

𝑓′∗

(functorially) induces a geometric morphism 𝑿 ×⃖𝒁 𝒀 → 𝑿′ ×⃖𝒁′ 𝒀′. We simply denote
the geometric morphism by 𝑥∗ ×⃖𝑧∗ 𝑦∗, leaving the natural transformations 𝜂 and 𝜃 im-
plicit. Please note that 𝑥∗ ×⃖𝑧∗ 𝑦∗ satisfies the obvious relations

pr1,∗ ∘ (𝑥∗ ×⃖𝑧∗ 𝑦∗) ≃ 𝑥∗ pr1,∗ and pr2,∗ ∘ (𝑥∗ ×⃖𝑧∗ 𝑦∗) ≃ 𝑦∗ pr2,∗ .

The remainder of this subsection focuses on generalising [45, Exposé XI, Proposi-
tion 2.3].

8.4.2. Suppose that we are given a diagram of∞-topoi

(8.4.3)

𝑿 𝒁 𝒀

𝑿′ 𝒁′ 𝒀′ ,

𝑓∗

𝑥∗ 𝑧∗

𝑔∗

𝑦∗

𝑓′∗ 𝑔′∗

and suppose further that 𝑥∗, 𝑦∗, and 𝑧∗ are coëssential with centres 𝑥!, 𝑦!, and 𝑧!, re-
spectively. Then taking the adjoint squares in the diagram (8.4.3) with respect to the
adjunctions 𝑥∗ ⫞ 𝑥!, 𝑦∗ ⫞ 𝑦!, and 𝑧∗ ⫞ 𝑧! [HA, Definition 4.7.4.13], we obtain a pair of
oriented squares

(8.4.4)

𝑿′ 𝒁′ 𝒀′

𝑿 𝒁 𝒀 .

𝑓′∗

𝑥! 𝑧!⟹

𝑔′∗

𝑦!

𝑓∗ 𝑔∗

⟸

Note that the natural transformation in the left-hand square of (8.4.4) points in the
wrong direction to apply (8.4.1).

8.4.5. Keep the notations of (8.4.2), and additionally assume that the natural transfor-
mation in the left-hand square of (8.4.4) is an equivalence, so that𝑓∗𝑥! ⥲ 𝑧!𝑓′∗ .Then by
the functoriality of the oriented fibre product in oriented diagrams (8.4.1), the diagram
(8.4.4) defines a geometric morphism 𝑥! ×⃖𝑧! 𝑦! ∶ 𝑿′ ×⃖𝒁′ 𝒀′ → 𝑿 ×⃖𝒁 𝒀.
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The following is now formal.

8.4.6 Proposition. With the notations and assumptions of (8.4.5), the geometric mor-
phism

𝑥∗ ×⃖𝑧∗ 𝑦∗ ∶ 𝑿 ×⃖𝒁 𝒀 → 𝑿
′ ×⃖𝒁′ 𝒀′

is coëssential with centre 𝑥! ×⃖𝑧! 𝑦! ∶ 𝑿′ ×⃖𝒁′ 𝒀′ → 𝑿 ×⃖𝒁 𝒀.

Wenow explain a particular application of Proposition 8.4.6 that allows us to deduce
that the pr2,∗ ∶ 𝑿 ×⃖𝒁 𝒀 → 𝒀 exhibits 𝑿 ×⃖𝒁 𝒀 as local over 𝒀 in the setting that 𝑓∗ is a
local geometric morphism of local∞-topoi.

8.4.7. Let 𝑓∗ ∶ 𝑿 → 𝒁 be a local geometric morphism of local∞-topoi with centres 𝑥∗
and 𝑧∗, respectively, and let 𝑔∗ ∶ 𝒀 → 𝒁 be a geometric morphism of∞-topoi. Then
since all of the vertical morphisms in the commutative diagram of∞-topoi

𝑿 𝒁 𝒀

𝑺 𝑺 𝒀

𝑓∗

𝛤𝑿,∗ 𝛤𝒁,∗

𝑔∗

𝛤𝒀,∗

exhibit the top∞-topoi as local over the bottom∞-topoi, applying the discussion of
(8.4.2), the assumption that 𝑓∗ is a local geometric morphism shows that we are in the
situation of (8.4.5). That is to say 𝑥∗, 𝑧∗, and id𝒀 induce a geometric morphism

𝑥∗ ×⃖𝑧∗ id𝒀 ∶ 𝒀 ≃ 𝑺 ×⃖𝑺 𝒀 → 𝑿 ×⃖𝒁 𝒀 .

The following is our generalisation of [45, Exposé XI, Proposition 2.3]. Note that
this generalisation is not just∞-toposic: in our version we don’t need to take stalks.

8.4.8 Lemma. With the notations of (8.4.7), the second projection pr2,∗ ∶ 𝑿 ×⃖𝒁 𝒀 → 𝒀
exhibits𝑿 ×⃖𝒁 𝒀 as local over 𝒀 with centre

𝑥∗ ×⃖𝑧∗ id𝒀 ∶ 𝒀 ≃ 𝑺 ×⃖𝑺 𝒀 → 𝑿 ×⃖𝒁 𝒀 .

Proof. The fact that pr2,∗ is coëssential with centre 𝑥∗ ×⃖𝑧∗ id𝒀 is immediate from Propo-
sition 8.4.6, and the full faithfulness of 𝑥∗ ×⃖𝑧∗ id𝒀 follows from the equivalence

pr2,∗ ∘ (𝑥∗ ×⃖𝑧∗ id𝒀) ≃ id𝒀 .

In the setting of Lemma 8.4.8, we deduce that the Beck–Chevalley morphism be-
comes an equivalence after taking its stalk at the centre of𝑿.

8.4.9 Lemma. Consider an oriented square of∞-topoi

𝑾 𝒀

𝑿 𝒁 ,

𝑞∗

𝑝∗ 𝑔∗𝜏⟸
𝑓∗
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where 𝑞∗ is a quasi-equivalence, 𝑿 and 𝒁 are local with centres 𝑥∗ and 𝑧∗, respectively,
and 𝑓∗ is a local geometric morphism. Then the natural transformation

𝑥∗𝛽𝜏 ∶ 𝑥∗𝑓∗𝑔∗ → 𝑥∗𝑝∗𝑞∗

is an equivalence.

Proof. We prove the stronger claim that 𝑥∗𝑓∗𝑔∗ ≃ 𝑥∗𝑝∗𝑞∗ and the space of natural
transformations 𝑥∗𝑓∗𝑔∗ → 𝑥∗𝑝∗𝑞∗ is contractible. Since 𝒁 is local we have equiva-
lences

𝑥∗𝑓∗𝑔∗ ≃ 𝑧∗𝑔∗ ≃ 𝛤𝒁,∗𝑔∗ ≃ 𝛤𝒀,∗ .
Since 𝑿 is local and 𝑞∗ is a quasi-equivalence, applying Lemma 7.1.3 we have equiva-
lences

𝑥∗𝑝∗𝑞∗ ≃ 𝛤𝑿,∗𝑝∗𝑞∗ ≃ 𝛤𝑾,∗𝑞∗ ≃ 𝛤𝒀,∗ .
Thus both 𝑥∗𝑓∗𝑔∗ and 𝑥∗𝑝∗𝑞∗ are equivalent to the global sections functor on 𝒀. We
are now done since 𝛤𝒀,∗ is corepresented by the terminal object of 𝒀.

8.5 Proof of theBeck–Chevalley condition for oriented fibre products
This subsection is devoted to the proof of Theorem 8.1.4.

Proof of Theorem 8.1.4. Write 𝛽∶ 𝑓∗𝑔∗ → pr1,∗ pr
∗
2 for the Beck–Chevalley natural

transformation of the oriented fibre product square (8.1.5).Notice that since𝑿 is bounded
coherent, left exact functors preserve truncated objects, and morphisms between trun-
cated objects are truncated, (5.11.13) shows that to prove the claim it suffices to show
that for every point 𝑥∗ ∈ Pt(𝑿) and truncated object 𝐹 ∈ 𝒀<∞, the morphism

𝑥∗𝛽(𝐹)∶ 𝑥∗𝑓∗𝑔∗(𝐹) → 𝑥∗ pr1,∗ pr∗2 (𝐹)

is an equivalence in 𝑺.
Fix a point 𝑥∗ ∈ Pt(𝑿), define 𝑧∗ ≔ 𝑓∗𝑥∗, and let ̄𝑓∗ ∶ 𝑿(𝑥) → 𝒁(𝑧) be the induced

geometric morphism on localisations. To simplify notation we write 𝑾 ≔ 𝑿 ×⃖𝒁 𝒀,
𝑾(𝑥) ≔ 𝑿(𝑥) ×𝑿𝑾, and 𝒀(𝑧) ≔ 𝒁(𝑧) ×𝒁 𝒀. Consider the cube

(8.5.1)

𝑾 𝒀

𝑾(𝑥) 𝒀(𝑧)

𝑿 𝒁

𝑿(𝑥) 𝒁(𝑧) ,

pr2,∗

pr1,∗

𝑔∗

̄ℓ𝑥,∗

𝑝∗

𝑞∗

̄ℓ𝑧,∗

𝑓∗

ℓ𝑥,∗

̄𝑓∗

ℓ𝑧,∗

̄𝑔∗
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formed by pulling back the back face along the bottom face. In the cube (8.5.1), the front
face is an oriented square, the back face is an oriented fibre product square, all other faces
are commutative, and the side faces are pullback squares. Moreover, the cube satisfies
the following property:

(∗) The natural transformation between the right adjoints given by the composite of
the back and left faces of (8.5.1) is equivalent to the natural transformation given
by the composite of the front and right faces of (8.5.1).

We claim that the front face of (8.5.1) is an oriented fibre product square. To see this,
note that by Proposition 7.5.3, the compatibility of the oriented fibre product with lim-
its (6.5.3), the compatibility of oriented fibre products with étale geometric morphisms
(Proposition 6.8.5), and Corollary 6.8.6, we have equivalences

𝑿(𝑥) ×⃖𝒁(𝑧) 𝒀(𝑧) ≃ ( lim
𝑈∈Nbd(𝑥)

𝑿/𝑈) ×⃖lim𝑉∈Nbd(𝑧) 𝒁/𝑉 ( lim
𝑉∈Nbd(𝑧)

𝒀/𝑔∗(𝑉))

≃ lim
𝑈∈Nbd(𝑥)

lim
𝑉∈Nbd(𝑧)

(𝑿/𝑈 ×⃖𝒁/𝑉 𝒀/𝑔∗(𝑉))

≃ lim
𝑈∈Nbd(𝑥)

lim
𝑉∈Nbd(𝑧)
(𝑿 ×⃖𝒁 𝒀)/𝑈×⃖𝑉𝑔∗(𝑉)

≃ lim
𝑈∈Nbd(𝑥)

lim
𝑉∈Nbd(𝑧)
(𝑿 ×⃖𝒁 𝒀)/ pr∗1 (𝑈)

≃ 𝑿(𝑥) ×𝑿𝑾 = 𝑾(𝑥) .

Applying Lemma 8.4.8 to the front face of (8.5.1), we deduce that 𝑞∗ ∶ 𝑾(𝑥) → 𝒀(𝑧)
exhibits𝑾(𝑥) as local over 𝒀(𝑧).

Now we define natural transformations

𝛼𝑅 ∶ 𝑥∗𝑓∗𝑔∗ → 𝛤𝑿(𝑥),∗ ̄𝑓
∗ ̄𝑔∗ ̄ℓ∗𝑧 and 𝛼𝐿 ∶ 𝑥∗ pr1,∗ pr∗2 → 𝛤𝑿(𝑥),∗𝑝∗𝑞

∗ ̄ℓ∗𝑧 ,

which are both equivalences when restricted to 𝒀<∞, as follows. Write 𝛽𝑅 for the Beck–
Chevalley morphism of the right-hand face of (8.5.1) and 𝛽𝐿 for the Beck–Chevalley
morphism of the left-hand face. Since the bottom face of (8.5.1) commutes, under iden-
tification of left adjoints, 𝛽𝑅 defines a natural transformation

̄𝑓∗𝛽𝑅 ∶ ℓ∗𝑥𝑓∗𝑔∗ ≃ ̄𝑓∗ℓ∗𝑧 𝑔∗ → ̄𝑓∗ ̄𝑔∗ ̄ℓ∗𝑧 .

Let 𝛼𝑅 be the composite

𝛼𝑅 ∶ 𝑥∗𝑓∗𝑔∗ 𝛤𝑿(𝑥),∗ ̄𝑓
∗ℓ∗𝑧 𝑔∗ 𝛤𝑿(𝑥),∗ ̄𝑓

∗ ̄𝑔∗ ̄ℓ∗𝑧 ,∼
𝛤𝑿(𝑥) ,∗

̄𝑓∗𝛽𝑅

where the left-hand equivalence is by Lemma 7.2.9 and the fact that 𝑧∗ = 𝑥∗𝑓∗. By
Proposition 8.3.1, 𝛽𝑅 is an equivalence when restricted to 𝒀<∞; therefore 𝛼𝑅 is also an
equivalence when restricted to 𝒀<∞. Similarly, since the top face of (8.5.1) commutes,
under identification of left adjoints, 𝛽𝐿 defines a natural transformation

𝛽𝐿 pr∗2 ∶ ℓ∗𝑥 pr1,∗ pr∗2 → 𝑝∗ ̄ℓ∗𝑥 pr∗2 ≃ 𝑝∗𝑞∗ ̄ℓ∗𝑧 .
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Let 𝛼𝐿 be the composite

𝛼𝐿 ∶ 𝑥∗ pr1,∗ pr∗2 𝛤𝑿(𝑥),∗ℓ
∗
𝑥 pr1,∗ pr

∗
2 𝛤𝑿(𝑥),∗𝑝∗𝑞

∗ ̄ℓ∗𝑧 ,∼
𝛤𝑿(𝑥) ,∗𝛽

𝐿 pr∗2

where the left-hand equivalence is ensured by Lemma 7.2.9. By Proposition 8.3.1, the
natural transformation 𝛽𝐿 is an equivalence when restricted to𝑾<∞, so since pr∗2 is left
exact we see that 𝛼𝐿 is an equivalence when restricted to 𝒀<∞.

Write ̄𝛽 ∶ ̄𝑓∗ ̄𝑔∗ → 𝑝∗𝑞∗ for the Beck–Chevalley morphism for the front face of the
cube (8.5.1). Since 𝑞∗ ∶ 𝑾(𝑥) → 𝒀(𝑧) exhibits𝑾(𝑥) as local over 𝒀(𝑧), Lemma 8.4.9 shows
that the natural transformation

𝛤𝑿(𝑥),∗ ̄𝛽 ∶ 𝛤𝑿(𝑥),∗ ̄𝑓
∗ ̄𝑔∗ → 𝛤𝑿(𝑥),∗𝑝∗𝑞

∗

is an equivalence. Since 𝛼𝑅 and 𝛼𝐿 are equivalences when restricted to𝒀<∞, to complete
the proof it suffices to show that the square

𝑥∗𝑓∗𝑔∗ 𝛤𝑿(𝑥),∗ ̄𝑓
∗ ̄𝑔∗ ̄ℓ∗𝑧

𝑥∗ pr1,∗ pr∗2 𝛤𝑿(𝑥),∗𝑝∗𝑞
∗ ̄ℓ∗𝑧

𝑥∗𝛽

𝛼𝑅

≀ 𝛤𝑿(𝑥) ,∗
̄𝛽 ̄ℓ∗𝑧

𝛼𝐿

commutes. This is immediate from the property (∗) combined with (8.1.3).

8.6 Applications of Beck–Chevalley
In this subsection we give a number of applications of our basechange theorem (Theo-
rem 8.1.4).

8.6.1 Example. Let 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 be geometric morphisms of ∞-
topoi, and assume that 𝑿 and 𝒀 are bounded coherent and 𝒁 is Stone. Then by Corol-
lary 5.14.14=[SAG, Corollary E.3.1.2],𝑓∗ and 𝑔∗ are automatically coherent. Since𝑿×⃖𝒁
𝒀 ≃ 𝑿 ×𝒁 𝒀 (Proposition 10.1.1), Theorem 8.1.4 shows that the (unoriented) pullback
square

(8.6.2)
𝑿 ×𝒁 𝒀 𝒀

𝑿 𝒁

⌟
pr1,∗

pr2,∗

𝑔∗

𝑓∗

satisfies the bounded Beck–Chevalley condition.

8.6.3 Subexample. Set 𝒁 = 𝑺 in Example 8.6.1, so that 𝑓∗ = 𝛤𝑿,∗ and 𝑔∗ = 𝛤𝒀,∗. Since
left exact functors preserve truncated objects, we see that for any truncated space𝐾 the
natural morphism

𝛤𝑿,∗𝛤∗𝑿𝛤𝒀,∗𝛤∗𝒀 (𝐾) → 𝛤𝑿,∗ pr1,∗ pr∗2 𝛤∗𝒀 (𝐾)
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in 𝑺 is an equivalence. Hence the natural morphism

𝛱∞(𝑿) ∘ 𝛱∞(𝒀) → 𝛱∞(𝑿 × 𝒀)

of prospaces becomes an equivalence after protruncation. Since the composition mon-
oidal structure and cartesian monoidal structre on Pro(𝑺) coincide on the full subcate-
gory 𝑺∧𝜋 of profinite spaces (Recollection 4.3.2), we deduce that

𝛱∧∞(𝑿 × 𝒀) ≃ 𝛱∧∞(𝑿) × 𝛱∧∞(𝒀) .

Combining this withCorollary 5.13.16we see that the profinite shape𝛱∧∞ ∶ Topbc
∞ → 𝑺∧𝜋

preserves both inverse limits and finite products.

8.6.4 Example. Let 𝑘 be a separably closed field and let𝑋 and 𝑌 be 𝑘-schemes. Assume
that 𝑋 is coherent and 𝑌 is proper over 𝑘. Then combining Chough’s work generaliz-
ing the proper basechange theorem in étale cohomology to the nonabelian setting [17,
Theorem 5.3] with Subexample 8.6.3 shows that the natural geometric morphism

(𝑋 ×Spec 𝑘 𝑌)ét → 𝑋ét ×(Spec 𝑘)ét 𝑌ét ≃ 𝑋ét × 𝑌ét

induces an equivalence onprofinite shapes, or, equivalently, on lisse local systems (Corol-
lary 5.14.16=[SAG, Corollary E.2.3.3]).

8.7 Gluing squares
We now use the bounded Beck–Chevalley condition for oriented fibre products to study
oriented squares that are both oriented fibre product squares and oriented pushouts
in the setting of bounded coherent∞-topoi. These gluing squares are essential to our
décollage approach to stratified higher topoi in §9.

8.7.1 Definition. A gluing square is an oriented square

𝑾 𝑼

𝒁 𝑿

𝑞∗

𝑝∗ 𝑗∗𝜎⟸
𝑖∗

in which:

→ every∞-topos is bounded coherent;

→ every geometric morphism is coherent;

→ the natural geometric morphism 𝒁 ∪⃖𝑾bc 𝑼 → 𝑿 is an equivalence (Construc-
tion 6.3.3);

→ the natural geometricmorphism𝑾→ 𝒁×⃖𝑿𝑼 is an equivalence (Definition 6.5.1).

We call the oriented fibre product𝑾 the link of the gluing square, or the deleted tubular
neighbourhood of 𝒁 inside𝑿.
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8.7.2 Construction. Let𝑿 be a bounded coherent∞-topos, along with a closed subto-
pos 𝑖∗ ∶ 𝒁 ↪ 𝑿 and quasicompact open complement 𝑗∗ ∶ 𝑼 ↪ 𝑿. Then we may form
the oriented fibre product 𝒁 ×⃖𝑿 𝑼, yielding the square

(8.7.3)
𝒁 ×⃖𝑿 𝑼 𝑼

𝒁 𝑿 .

pr2,∗

pr1,∗ 𝑗∗𝜏⟸
𝑖∗

The∞-topos𝑿 is the bounded coherent recollement𝒁∪⃖pr1,∗ pr
∗
2

bc 𝑼. Indeed, the bounded
Beck–Chevalley condition (Theorem 8.1.4) ensures that 𝛽𝜏 ∶ 𝑖∗𝑗∗ → pr1,∗ pr

∗
2 becomes

an equivalence after restriction to𝑼coh
<∞. So Proposition 6.1.15 applies, whence (8.7.3) is

a gluing square.
Dually, let𝑾, 𝒁, and 𝑼 be bounded coherent∞-topoi, and let 𝑝∗ ∶ 𝑾 → 𝒁 and
𝑞∗ ∶ 𝑾 → 𝑼be geometricmorphisms. Forming the bounded coherent oriented pushout
𝑿 ≔ 𝒁 ∪⃖𝑾bc 𝑼, we obtain a square

(8.7.4)
𝑾 𝑼

𝒁 𝒁 ∪⃖𝑾bc 𝑼 .

𝑞∗

𝑝∗ 𝑗∗𝜎⟸

𝑖∗

We thus obtain a geometric morphism 𝜓(𝑝, 𝑞, 𝜎)∗ ∶ 𝑾 → 𝒁 ×⃖𝑿 𝑼, and if 𝜓(𝑝, 𝑞, 𝜎)∗ is
an equivalence, then the square (8.7.4) is a gluing square.

The full subcategory of Fun(𝛥1×𝛥1,Topbc
∞) spanned by the gluing squares is equiva-

lent to the (non-full) subcategory of Fun(𝛥1,Cat∞,𝛿1)whose objects are bounded coher-
ent gluing functors between bounded coherent∞-topoi and whose morphisms 𝜙 → 𝜙′
are squares

𝑼 𝒁

𝑼′ 𝒁′

𝜙

𝑓∗ 𝑔∗

𝜙′

in which 𝑓∗ and 𝑔∗ are coherent geometric morphisms.

8.7.5Warning. Without some boundedness and coherence hypotheses, the notion of a
gluing square would not be apposite: if 𝑋 ≔ [0, 1] is the usual closed interval, 𝑍 ≔ {0},
and 𝑈 ≔ ]0, 1], then the oriented fibre product 𝑍 ×⃖𝑋 𝑈̃ is the empty∞-topos.

8.7.6 Example. If𝑊, 𝑍, and 𝑈 are profinite spaces, and if 𝑝∶ 𝑊 → 𝑍 and 𝑞∶ 𝑊 → 𝑈
are morphisms, then we may form the profinite [1]-stratified space𝑋 corresponding to
the profinite spatial décollage 𝑍 ← 𝑊→ 𝑈. Now we form the Stone∞-topoi

𝑾 ≔ 𝑊̃ , 𝒁 ≔ 𝑍 , and 𝑼 ≔ 𝑈̃ ,
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and we form the bounded coherent oriented pushout𝑿 ≔ 𝒁 ∪⃖𝑾bc 𝑼:

𝑾 𝑼

𝒁 𝑿 .

𝑞∗

𝑝∗ 𝑗∗𝜎⟸
𝑖∗

The natural geometric morphism 𝑿 → 𝑋 is now an equivalence, since 𝑋 is the recolle-
ment of 𝒁 and 𝑼 along 𝑝∗𝑞∗, and𝑋 is bounded and coherent. Now we compute

𝒁 ×⃖𝑿 𝑼 ≃ Mor[̃1]([̃1], 𝑿) ≃ ̃Map[1]([1], 𝑋) ≃ 𝑊̃ = 𝑾 .

Thus the square above is in fact a gluing square.
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Part III

Stratified higher topos theory
In this part, we import the theory of stratifications into higher topos theory (§9). In §10
we introduce a class of bounded coherent∞-topoi called spectral∞-topoi.These are the
bounded coherent stratified∞-topoi all of whose strata are Stone∞-topoi.The cheif ex-
ample of a spectral∞-topos is the étale∞-topos of a coherent scheme (Example 10.2.4).
We then prove our∞-Categorical Hochster Duality Theorem (Theorem 10.3.1) which
shows that the∞-category of profinite stratified spaces is equivalent to the∞-catego-
ry of spectral ∞-topoi. In § 11 we use ∞-Categorical Hochster Duality to provide a
stratified refinement of the profinite shape – the profinite stratified shape, and provide
stratified refinement of the main results on the profinite shape discussed in §5.14.

9 Stratified higher topoi
We now introduce stratifications in the setting of higher topoi.

9.1 Higher topoi attached to posets & proposets
9.1.1. A sheaf on a poset 𝑃 (with its Alexandroff topology – Definition 1.1.1) is de-
termined by its values on the principal open sets, which coincide with its stalks. Pre-
cisely, the principal opens form a basis for the topology on 𝑃 and 𝑃, and the assignment
𝑝 ↦ 𝑃≥𝑝 is a fully faithful functor 𝑃 ↪ Open(𝑃)op which induces an equivalence

𝑃 ≔ Sh(Open(𝑃)) ⥲ Fun(𝑃, 𝑺)

(cf. [5, Corollary 2.4; 56, Proposition B.6.4]). In particular, the ∞-topos 𝑃 is both 0-
localic and Postnikov complete [SAG, §A.7.2].

9.1.2. If 𝑃 is a finite poset, then 𝑃 is a coherent∞-topos (Example 5.7.1), and a sheaf 𝐹
on𝑃 is 𝑛-coherent if and only if all of the stalks of 𝐹 have finite homotopy sets in degrees
𝑚 ≤ 𝑛.
9.1.3. The assignment 𝑃 ↦ 𝑃 extends to a functor Pro(poSet) → Top∞, which we also
denote by 𝑷 ↦ 𝑷̃. Thus if 𝑷 ≔ {𝑃𝛼}𝛼∈𝐴 is an inverse system of posets, then

𝑷̃ ≃ lim
𝛼∈𝐴
𝑃𝛼

in Top∞. That is, by [HTT, Theorem 6.3.3.1], 𝑷̃ is equivalent to the∞-category with
objects collections {𝐹𝛼}𝛼∈𝐴 of functors𝐹𝛼 ∶ 𝑃𝛼 → 𝑺 alongwith compatible identifications
of 𝐹𝛼′ with the right Kan extension of 𝐹𝛼 along 𝑃𝛼 → 𝑃𝛼′ for any morphism 𝛼 → 𝛼′ in
𝐴. In particular, 𝑷̃ is 0-localic.
9.1.4. If 𝑆 is a spectral topological space, the 0-topos (locale) Open(𝑆) is the limit of the
0-topoi Open(𝑃) over FC(𝑆). Thus we have an equivalence of 0-localic∞-topoi

𝑆 ≃ lim
𝑃∈FC(𝑆)
𝑃 .
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Since 𝑆 is coherent (Example 5.7.1), the ∞-pretopos 𝑆coh<∞ of truncated coherent ob-
jects of 𝑆 can be identified with the filtered colimit colim𝑃∈FC(𝑆)op 𝑃coh<∞ over the category
FC(𝑆) of finite constructible stratifications 𝑆 → 𝑃, along the relevant restriction functors
(§5.9).

Recall that if 𝑓∶ 𝑆′ → 𝑆 is a quasicompact continuous map of spectral topologi-
cal spaces, then the the induced geometric morphism 𝑓∗ ∶ 𝑆′ → 𝑆 is coherent (Exam-
ple 5.7.1).

9.1.5. If 𝑆 is a spectral topological space, then the∞-category of points of 𝑆 is equivalent
to the materialisation of 𝑆 (regarded as a profinite poset), viz.,

Pt(𝑆) ≃ mat(𝑆) .

Thus the points of 𝑆 are precisely the points of 𝑆 equipped with the specialisation partial
ordering.

9.2 Stratifications over posets
There are a number of ways to describe stratified∞-topoi, but let us focus upon themost
elementary description – a straightforward generalisation of the notion of a stratified
topological space (Definition 1.2.1).

9.2.1 Definition. For any poset 𝑃 and any∞-topos 𝑿, a stratification of 𝑿 by 𝑃 – or,
more briefly, a 𝑃-stratification of 𝑿 – is a geometric morphism of∞-topoi 𝑓∗ ∶ 𝑿 →
𝑃. We define the ∞-category StrTop∞,𝑃 of 𝑃-stratified ∞-topoi as the overcategory
Top∞,/𝑃.

We define the∞-category StrTop∞ of stratified∞-topoi as the pullback

StrTop∞ ≔ Fun(𝛥1,Top∞) ×Fun(𝛥{1},Top∞) poSet .

Since Top∞ admits fibre products, the projection StrTop∞ → poSet is a bicartesian
fibration whose fibre over a poset 𝑃may be identified with the∞-category StrTop∞,𝑃.

9.2.2 Notation. Let 𝑃 be a poset, and let 𝑿 be a 𝑃-stratified ∞-topos. For any open
subset 𝑈 ⊆ 𝑃, we abuse notation and write 𝑈 also for the corresponding open of 𝑃, and
we write

𝑿𝑈 ≔ 𝑿/𝑓∗𝑈 ≃ 𝑿 ×𝑃 𝑈̃ ⊆ 𝑿
for the corresponding open subtopos. (Here the fibre product is formed in Top∞.) Du-
ally, if 𝑍 ⊆ 𝑃 is closed, then we write

𝑿𝑍 ≔ 𝑿∖𝑓∗(𝑃∖𝑍) ≃ 𝑿 ×𝑃 𝑍 ⊆ 𝑿

for the corresponding closed subtopos, so that if 𝑈 and 𝑍 are complementary, then one
exhibits𝑿 as a recollement of𝑿𝑍 and𝑿𝑈.

In particular, for any point 𝑝 ∈ 𝑃, we write

𝑿≥𝑝 ≔ 𝑿𝑃≥𝑝 and 𝑿>𝑝 ≔ 𝑿𝑃>𝑝
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as well as
𝑿≤𝑝 ≔ 𝑿𝑃≤𝑝 and 𝑿<𝑝 ≔ 𝑿𝑃<𝑝 .

More generally, if 𝛴 ⊆ 𝑃 is any subset, then we write

𝑿𝛴 ≔ 𝑿 ×𝑃 𝛴̃

for the fibre product formed inTop∞. So we define the 𝑝-th stratum as the fibre product
in Top∞:

𝑿𝑝 ≔ 𝑿≥𝑝 ×𝑿 𝑿≤𝑝 ,
which is an open subtopos of the closed subtopos𝑿≤𝑝 ⊆ 𝑿 as well as a closed subtopos
of the open subtopos𝑿≥𝑝 ⊆ 𝑿.

9.2.3 Definition. A stratification 𝑿 → 𝑃 of an ∞-topos 𝑿 is finite or noetherian if
and only if the poset 𝑃 is so. We write StrTopnoeth

∞ ⊂ StrTop∞ for the full subcategory
spanned by the noetherian stratifications.

Let𝑃 be a finite poset.We say that a𝑃-stratified∞-topos𝑓∗ ∶ 𝑿 → 𝑃 is constructible
if and only if for any point 𝑝 ∈ 𝑃 and any quasicompact open 𝑉 ∈ Open(𝑿), the∞-
topos 𝑿≥𝑝 ×𝑿 𝑿/𝑉 is coherent. We say that a constructible stratification 𝑓∗ ∶ 𝑿 → 𝑃
is coherent constructible if 𝑿 is a coherent∞-topos, and we say that 𝑓∗ is bounded co-
herent constructiblecoherent constructible if 𝑿 is a bounded coherent∞-topos. Propo-
sition 6.1.8=[DAG XIII, Proposition 2.3.22] shows that a stratification 𝑓∗ ∶ 𝑿 → 𝑃 is
coherent constructible if and only if 𝑿 is coherent and the geometric morphism 𝑓∗ is
coherent.Wewrite StrTopbcc

∞ ⊂ StrTop∞ for the subcategorywhose objects are bounded
coherent constructible stratified∞-topoi and whosemorphisms are coherent geometric
stratified morphisms:

StrTopbcc
∞ ≔ Fun(𝛥1,Topbc

∞) ×Fun(𝛥{1},Topbc
∞)

poSet fin .

9.2.4. Since 𝑃 is 0-localic, it follows that a 𝑃-stratification of an∞-topos 𝑿 is tanta-
mount to the data of a morphism of 0-topoi (locales) Open(𝑿) → Open(𝑃), where
Open(𝑿) is the 0-topos of (−1)-truncated objects of 𝑿, and Open(𝑃) = Open(𝑃) is the
0-topos of open subsets of 𝑃. Thus one obtains an equivalence of∞-categories

StrTop∞,𝑃 ≃ Top∞ ×Top0 Top0,/Open(𝑃) .

One may speak of a stratification of an 𝑛-topos for any 𝑛 ∈ 𝑵 (as well as the∞-cat-
egory StrTop𝑛), and it is tantamount to a stratification of the corresponding 𝑛-localic
∞-topos:

StrTop𝑛,𝑃 ≃ Top𝑛 ×Top0 Top0,/Open(𝑃) .

9.2.5. Since noetherian posets are sober, the functor poSetnoeth → Top∞ given by the
assignment 𝑃 ↦ 𝑃 is fully faithful, whence the∞-category StrTopnoeth

∞ of noetherian
stratified∞-topoi can be identified with a full subcategory of Fun(𝛥1,Top∞).

9.2.6 Example. A {0}-stratified∞-topos is nothing more than an∞-topos.
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9.2.7 Example. Rephrasing (6.1.3), a [1]-stratified∞-topos 𝑿 → [̃1] is tantamount to
a recollement of∞-topoi. If𝑿 is coherent, the stratification is constructible if and only
if the open subtopos𝑿1 is quasicompact.

9.2.8. To generalise the previous example, let 𝑃 be a poset. We claim that the data of a
𝑃-stratified∞-topos determines and is determined by a suitable colax functor from 𝑃op
to a double∞-category of∞-topoi and left exact functors.

To make a precise assertion, we shall say that a locally cocartesian fibration 𝑋 →
𝑃op is left exact if each fibre 𝑋𝑝 admits all finite limits, and for any 𝑝 ≤ 𝑞 in 𝑃, the
functor 𝑋𝑞 → 𝑋𝑝 is left exact. Now left exact locally cocartesian fibrations 𝑋 → 𝑃op
whose fibres are∞-topoi organise themselves into a∞-category LocCocartlex,top𝑃op . Then
it seems likely that one can produce an equivalence of∞-categories

LocCocartlex,top𝑃op ≃ StrTop∞,𝑃 ,

natural in 𝑃. To prove this would involve a diversion into a simplicial thicket that is
unnecessary for our work here; we therefore leave this matter for a later paper.

9.2.9 Example. The∞-topos 𝑃, equipped with the identity stratification, is itself is ter-
minal in StrTop∞,𝑃.

9.2.10Example. If𝑃 is a noetherian poset, andTSpcsober denotes the 1-category of sober
topological spaces, then the assignment𝑊↦ 𝑊̃ is a fully faithful functor

TSpcsober/𝑃 ↪ StrTop∞,𝑃 .

9.2.11 Example. Let𝑃 be a poset, and𝑓∶ 𝛱 → 𝑃 a𝑃-stratified space (Definition 2.1.1);
i.e., 𝑓 is a conservative functor. In light of the equivalence 𝑃 ≃ Fun(𝑃, 𝑺), let us abuse
notation slightly and write

𝛱̃ ≔ Fun(𝛱, 𝑺)
for the∞-topos of functors𝛱 → 𝑺; then right Kan extension along 𝑓 is a morphism of
∞-topoi

𝑓∗ ∶ 𝛱̃ → 𝑃 ,
whence 𝛱̃ is a 𝑃-stratified ∞-topos. For any point 𝑝 ∈ 𝑃, the 𝑝-th stratum of 𝛱̃ is
canonically identified the∞-topos𝛱𝑝 = Fun(𝛱𝑝, 𝑺).

The assignment𝛱 ↦ 𝛱̃ defines a functor Str→ StrTop∞ over poSet.

9.2.12 Subexample. Let 𝑃 be a noetherian poset, and Let 𝑋 be a conically 𝑃-stratified
topological space [HA, Definition A.5.5]. Then we obtain the 𝑃-stratified space

𝛱(∞,1)(𝑋; 𝑃) ≔ Sing𝑃(𝑋)

and thus the 𝑃-stratified∞-topos 𝛱̃(∞,1)(𝑋; 𝑃). If 𝑋 is hereditarily paracompact and
locally of singular shape, then in light of [HA, §A.4], the stratum 𝛱̃(∞,1)(𝑋; 𝑃)𝑝 over any
point 𝑝 ∈ 𝑃 is equivalent to the∞-category of locally constant sheaves on 𝑋𝑝. In light
of [HA, §A.9], the∞-topos 𝛱̃(∞,1)(𝑋; 𝑃) is equivalent to the∞-category of formally
constructible sheaves on 𝑋 – i.e., those sheaves whose restrictions to each stratum 𝑋𝑝
are locally constant.
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9.2.13 Lemma. Let 𝑃 be a finite poset and 𝛱 be a 𝜋-finite 𝑃-stratified space. Then the
stratification 𝛱̃ → 𝑃 is bounded coherent constructible.

Proof. By definition 𝛱̃ is 𝑛-localic for some 𝑛 ∈ 𝑵. Moreover, the truncated coherent
objects of 𝛱̃ are those functors𝛱 → 𝑺 that are valued in 𝜋-finite spaces. One concludes
that 𝛱̃ is coherent. Since this is true for𝛱, it is true for any open therein, whence 𝛱̃ → 𝑃
is constructible.

9.3 Toposic décollages
In analogy with the construction of the spatial décollage attached to a stratified space
(Construction 4.2.1), we can attach to a stratified ∞-topos what we call its (toposic)
décollage. Whereas a stratified∞-topos consists of strata that are glued together, its dé-
collage is the result of pulling these strata apart while retaining the linking information
necessary to reconstruct the stratified∞-topos.

9.3.1 Definition. Let 𝑃 be a poset. We say that a functor 𝑫∶ sdop(𝑃) → Topbc
∞ is a

décollage over 𝑃 if and only if the following conditions are satisfied.

→ If 𝑝0, 𝑝1 ∈ 𝑃 are two points such that 𝑝0 < 𝑝1, then the square

𝑫{𝑝0, 𝑝1} 𝑫{𝑝1}

𝑫{𝑝0} 𝑫{𝑝0} ∪⃖
𝑫{𝑝0,𝑝1}
bc 𝑫{𝑝1}

𝑗∗⟸

𝑖∗

is a gluing square.

→ For any string {𝑝0 ≤ ⋯ ≤ 𝑝𝑚} ⊆ 𝑃, the geometric morphism to the fibre product
of∞-topoi

𝑫{𝑝0 ≤ ⋯ ≤ 𝑝𝑚} → 𝑫{𝑝0 ≤ 𝑝1} ×𝑫{𝑝1}
𝑫{𝑝1 ≤ 𝑝2} ×𝑫{𝑝2}

⋯ ×
𝑫{𝑝𝑚−1}
𝑫{𝑝𝑚−1 ≤ 𝑝𝑚}

is an equivalence.

We write Déc𝑃(Topbc
∞) ⊆ Fun(sdop(𝑃),Topbc

∞) for the full subcategory spanned by the
décollages over 𝑃.

It seems likely that a décollage over𝑃 can be thought of as a suitable category internal
to Topbc

∞ along with a conservative functor to 𝑃. Making such an interpretation precise
and helpful is a task that lies outside the scope of this work.

9.3.2. If𝑫∶ sdop(𝑃) → Topbc
∞ is a décollage over𝑃, and if𝑝, 𝑞 ∈ 𝑃 are points with𝑝 < 𝑞,

then for the sake of typographical brevity, let us here write

𝑫{𝑝} ∪⃖ 𝑫{𝑞} ≔ 𝑫{𝑝} ∪⃖𝑫{𝑝≤𝑞}bc 𝑫{𝑞} .
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The two conditions of Definition 9.3.1 together specify, for any string {𝑝0 ≤ ⋯ ≤ 𝑝𝑚} ⊆
𝑃, an equivalence

𝑫{𝑝0 ≤ ⋯ ≤ 𝑝𝑚} ⥲ 𝑫{𝑝0} ×⃖𝑫{𝑝0}∪⃖𝑫{𝑝1}
𝑫{𝑝1} ×⃖𝑫{𝑝1}∪⃖𝑫{𝑝2}

⋯ ×⃖
𝑫{𝑝𝑚−1}∪⃖𝑫{𝑝𝑚}

𝑫{𝑝𝑚} ,

which we will call the Segal equivalence.

9.3.3 Example. The terminal object of Déc𝑃(Topbc
∞) is the constant functor sdop(𝑃) →

Topbc
∞ whose value is the∞-topos 𝑺.

9.3.4 Construction. Consider the 1-category 𝐽 of Construction 4.1.4, whose objects are
pairs (𝑃, 𝛴) consisting of a poset𝑃 and a string𝛴 ⊆ 𝑃, so that the assignment (𝑃, 𝛴) ↦ 𝑃
is a cocartesian fibration 𝐽 → poSet whose fibre over a poset 𝑃 is the poset sdop(𝑃).

We write
PairpoSet(𝐽,Topbc

∞)
for the simplicial set over poSet defined by the following universal property: for any
simplicial set 𝐾 over poSet, one demands a bijection

MorsSet/poSet(𝐾,PairpoSet(𝐽,Top
bc
∞)) ≅ MorsSet(𝐾 ×poSet 𝐽,Topbc

∞) ,

natural in 𝐾. By [HTT, Corollary 3.2.2.13], the functor

PairpoSet(𝐽,Topbc
∞) → poSet

is a cartesian fibration whose fibre over a poset 𝑃 is the∞-category Fun(sdop(𝑃),Topbc
∞).

Now let
Déc(Topbc

∞) ⊂ PairpoSet(𝐽,Top
bc
∞)

denote the full subcategory spanned by the pairs (𝑃,𝑫) in which𝑫 is a toposic décollage
over 𝑃. Since Déc(Topbc

∞) contains all the cartesian edges, the functor Déc(Topbc
∞) →

poSet is a cartesian fibration.

9.4 The nerve of a stratified∞-topos
9.4.1 Construction. Let 𝑃 be a poset, and let 𝑓∗ ∶ 𝑿 → 𝑃 be a 𝑃-stratified∞-topos.
Then for any monotonic map 𝜙∶ 𝑄 → 𝑃, we define the∞-topos of sections of 𝑿 over 𝑄
as the pullback of∞-topoi

Mor𝑃(𝑄,𝑿) ≔ Mor(𝑄,𝑿) ×Mor(𝑄,𝑃) {̃𝜙} .

The∞-topos Mor𝑃(𝑄,𝑿) depends only on the pullback𝑿 ×𝑃 𝑄:

Mor𝑃(𝑄,𝑿) ≃ Mor𝑄(𝑄,𝑿 ×𝑃 𝑄) .

We thus obtain a functor 𝑵𝑃(𝑿)∶ sdop(𝑃) → Top∞ that carries a string 𝛴 ⊆ 𝑃 to
the∞-topos

𝑵𝑃(𝑿)(𝛴) ≔ Mor𝑃(𝛴̃, 𝑿) .
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For any string {𝑝0 ≤ ⋯ ≤ 𝑝𝑚} ⊆ 𝑃, we thus obtain an identification

𝑵𝑃(𝑿){𝑝0 ≤ ⋯ ≤ 𝑝𝑚} ≃ 𝑿𝑝0 ×⃖𝑿 𝑿𝑝1 ×⃖𝑿⋯ ×⃖𝑿 𝑿𝑝𝑚 .

In particular, if𝑃 is finite and𝑿 is bounded coherent constructible (Definition 9.2.3),
then the functor𝑵𝑃(𝑿) is a décollage over𝑃. We call𝑵𝑃(𝑿) the nerve of the𝑃-stratified
∞-topos𝑿, and we call𝑵∶ StrTopbcc

∞ → Déc(Topbc
∞) over poSet the nerve functor.

9.4.2 Example. Let𝑃 be a poset, and𝛱 a𝑃-stratified space.Thenone has a identification

𝑵𝑃(𝛱̃) ≃ 𝑁𝑃(𝛱) ,

natural in 𝑃 and𝛱, since for any string 𝛴 ⊆ 𝑃, one has

Mor𝑃(𝛴̃, 𝛱̃) ≃ ̃Map𝑃(𝛴,𝛱)

via the natural morphism.

We now proceed to demonstrate that the nerve is an equivalence of∞-categories.

9.4.3Theorem. For any finite poset𝑃, the nerve functor𝑵𝑃 ∶ StrTopbcc
∞,𝑃 → Déc𝑃(Topbc

∞)
is an equivalence of∞-categories.

Proof. We begin by reducing to the case in which 𝑃 is a nonempty, finite, totally ordered
set. To make this reduction, we note that 𝑃 ≃ colim𝛴∈sd(𝑃) 𝛴, whence 𝑃 is the limit
𝑃 ≃ lim𝛴∈sdop(𝑃) 𝛴̃ in Cat∞,𝛿1 (which is the colimit in Top∞) and moreover

sdop(𝑃) ≃ colim
𝛴∈sd(𝑃)

sdop(𝛴) .

From this we deduce that

StrTopbcc
∞,𝑃 ≃ colim

𝛴∈sd(𝑃)
StrTopbcc

∞,𝛴 and Déc𝑃(Topbc
∞) ≃ colim
𝛴∈sd(𝑃)

Déc𝛴(Topbc
∞) ,

which provides our reduction.
Now when 𝑃 = [𝑛] ≔ {0 ≤ ⋯ ≤ 𝑛} is a nonempty totally ordered finite set, we

construct an inverse𝑼𝑛 ∶ Déc[𝑛](Topbc
∞) → StrTopbcc

∞,[𝑛] to the nerve functor𝑵𝑛 ≔ 𝑵[𝑛]
by forming the iterated bounded coherent oriented pushout:

𝑼𝑛(𝑫) ≔ 𝑫{0} ∪⃖
𝑫{0≤1}
bc 𝑫{1} ∪⃖𝑫{1≤2}bc ⋯ ∪⃖𝑫{𝑛−1≤𝑛}bc 𝑫{𝑛} ,

equipped with its canonical geometric morphism to

[̃𝑛] ≃ 𝑼𝑛(𝑺) ,

which is visibly coherent.
The universal properties of the iterated bounded coherent oriented pushout and the

iterated oriented pullback provide natural transformations𝑼𝑛𝑵𝑛 → id and id→ 𝑵𝑛𝑼𝑛.
We aim to show that these natural transformations are equivalences.
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To see that 𝑼𝑛 is an inverse to 𝑵𝑛, we may induct on 𝑛. The case 𝑛 = 0 is obvious.
Assume now that 𝑛 ≥ 1 and that𝑼𝑛−1 is an inverse to𝑵𝑛−1. Now if𝑿 is a bounded coher-
ent∞-topos with a constructible stratification𝑿 → [̃𝑛], then consider the recollement
of𝑿 given by𝑿≤𝑛−1 and𝑿𝑛. We thus have a gluing square

𝑿≤𝑛−1 ×⃖𝑿 𝑿𝑛 𝑿𝑛

𝑿≤𝑛−1 𝑿 .

𝑞∗

𝑝∗ 𝑗∗𝜎⟸

𝑖∗

As a result, we compute:

𝑼𝑛𝑵𝑛(𝑿) ≃ 𝑼𝑛−1𝑵𝑛−1(𝑿≤𝑛−1) ∪⃖
𝑿≤𝑛−1×⃖𝑿𝑿𝑛
bc 𝑿𝑛 ≃ 𝑿≤𝑛−1 ∪⃖

𝑿≤𝑛−1×⃖𝑿𝑿𝑛
bc 𝑿𝑛 ≃ 𝑿 ,

as desired. In the other direction, suppose𝑫∶ sdop([𝑛]) → Topbc
∞ is a toposic décollage.

For any 𝑘 ∈ [𝑛], write 𝑘̂ for {0,… , 𝑘 − 1, 𝑘 + 1,… , 𝑛} ⊂ [𝑛]; for any string 𝛴 ⊆ 𝑘̂, the
map𝑫(𝛴) → 𝑵𝑛𝑼𝑛(𝑫)(𝛴) clearly factors via equivalences

𝑫(𝛴) ≃ (𝑫|sdop(𝑘̂))(𝛴) ⥲ 𝑵𝑘̂𝑼𝑘(𝑫|sdop(𝑘̂))(𝛴) ≃ 𝑵𝑛𝑼𝑛(𝑫)(𝛴) ,

so it remains only to contemplate the case𝛴 = [𝑛] itself. For this, note that themorphism
𝑫([𝑛]) → 𝑵𝑛𝑼𝑛(𝑫)([𝑛]) is homotopic to the Segal equivalence

𝑫{0 ≤ ⋯ ≤ 𝑛} ⥲ 𝑫{0} ×⃖
𝑼𝑛(𝑫)
𝑫{1} ×⃖
𝑼𝑛(𝑫)
⋯ ×⃖
𝑼𝑛(𝑫)
𝑫{𝑛} ,

whence our claim.

9.5 Stratifications over spectral topological spaces
9.5.1 Definition. For any proposet 𝑷, a 𝑷-stratified∞-topos is a morphism of∞-topoi
𝑿 → 𝑷̃. We write StrTop∞,𝑷 for the∞-category Top∞,/𝑷̃ of 𝑷-stratified∞-topoi.

We are interested exclusively in the case where 𝑷 is a spectral topological space,
viewed as a profinite poset. Hence we define

StrTop∧∞ ≔ Fun(𝛥1,Top∞) ×Fun(𝛥{1},Top∞) TSpc
spec ,

so that the fibre over 𝑆 can be identified with StrTop∞,𝑆.

9.5.2. If 𝑆 is a spectral topological space, then the∞-topos 𝑆 of sheaves on 𝑆 coincides
with the limit of∞-topoi lim𝑃∈FC(𝑆) 𝑃, so there is no ambiguity in the notation; further-
more, one has

StrTop∧∞,𝑆 ≃ Top∞ ×Top0 Top0,/Open(𝑆) ,

where Open(𝑆) is the locale of open subsets of 𝑆.

In the case of stratifications over spectral topological spaces, we employ notations as in
Notation 9.2.2.

112



9.5.3Notation. Let 𝑆 be a spectral topological space, and let𝑿 be a 𝑆-stratified∞-topos.
For any open subset 𝑈 ⊆ 𝑆, we abuse notation and write 𝑈 also for the corresponding
open of 𝑆, and we write

𝑿𝑈 ≔ 𝑿/𝑓∗𝑈 ≃ 𝑿 × ̃𝑆 𝑈̃ ⊆ 𝑿
for the corresponding open subtopos. (Here the fibre product is formed in Top∞.) Du-
ally, if 𝑍 ⊆ 𝑆 is closed, then we write

𝑿𝑍 ≔ 𝑿∖𝑓∗(𝑆∖𝑍) ≃ 𝑿 × ̃𝑆 𝑍 ⊆ 𝑿

for the corresponding closed subtopos, so that if 𝑈 and 𝑍 are complementary, then one
exhibits𝑿 as a recollement of𝑿𝑍 and𝑿𝑈.

More generally, for any subspace𝑊 ⊂ 𝑆, we write

𝑿𝑊 ≔ 𝑿 × ̃𝑆 𝑊̃ .

In particular, for any point 𝑠 ∈ 𝑆we define the 𝑠-th stratum as the fibre product in Top∞:

𝑿𝑠 ≔ 𝑿 × ̃𝑆 {̃𝑠} ⊆ 𝑿 .

The key finiteness condition for stratifications over spectral topological spaces is
bounded coherent constructibility.

9.5.4 Definition. If𝑿 is an∞-topos and 𝑆 is a spectral topological space, then a strati-
fication 𝑓∗ ∶ 𝑿 → 𝑆 is said to be constructible if and only if, for any quasicompact open
𝑈 ⊆ 𝑆 and any quasicompact open 𝑉 ∈ Open(𝑿), the∞-topos

𝑿𝑈 ×𝑿 𝑿/𝑉 ≃ 𝑿/(𝑓∗(𝑈)×𝑉)

is coherent.We say that a constructible stratification𝑓∗ ∶ 𝑿 → 𝑆 is coherent constructible
if 𝑿 is a coherent∞-topos, and we say that 𝑓∗ is bounded coherent constructible if 𝑿 is
a bounded coherent∞-topos.

9.5.5 Lemma. Let 𝑆 be a spectral topological space and 𝑓∗ ∶ 𝑿 → 𝑆 be an 𝑆-stratified
∞-topos. If 𝑿 is coherent, then the stratification 𝑓∗ is constructible if and only if 𝑓∗ is a
coherent geometric morphism.

Proof. If𝑓∗ is coherent, then since quasicompact opens in𝑿 are coherent [SAG, Remark
A.2.3.5] and coherent objects of𝑿 are closed under finite products, 𝑓∗ is a constructible
stratification

For the other direction, assume that 𝑓∗ is a constructible stratification. By Corol-
lary 5.4.5, to show that 𝑓∗ is coherent it suffices to show that 𝑓∗ carries truncated coher-
ent objects of 𝑆 to coherent objects of 𝑿. Let 𝐹 ∈ 𝑆coh<∞ be a truncated coherent object;
then there exists a finite constructible stratification 𝑆 → 𝑃 such that 𝐹 is the pullback of
a truncated coherent object of 𝑃. Thus, for every point 𝑝 ∈ 𝑃, the restriction 𝑓∗(𝐹)|𝑿𝑝
is lisse. By Proposition 6.1.8=[DAG XIII, Proposition 2.3.22] it follows that 𝐹 is coher-
ent.
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9.5.6 Notation. Let 𝑆 be a spectral topological space. We define the∞-category of co-
herent constructible 𝑆-stratified∞-topoi as the overcategory

StrTop∧,cc∞,𝑆 ≔ Topcoh
∞,/ ̃𝑆 .

We write StrTop∧,bcc∞,𝑆 ⊂ StrTop
∧,cc
∞,𝑆 for the full subcategory spanned by the bounded co-

herent constructible 𝑆-stratified∞-topoi.
More generally, we define

StrTop∧,cc∞ ≔ Fun(𝛥1,Topcoh
∞ ) ×Fun(𝛥{1},Topcoh

∞ )
TSpcspec ,

so that the fibre over 𝑆 can be identifiedwith StrTop∧,cc∞,𝑆.Wewrite StrTop∧,bcc∞ ⊂ StrTop
∧,cc
∞

for the full subcategory spanned by those objects𝑿 → 𝑆where𝑿 is a bounded∞-topos.

9.6 The natural stratification of a coherent∞-topos
It turns out that any coherent ∞-topos 𝑿 has a canonical profinite stratification: the
0-topos (=locale) Open(𝑿) is the locale of a spectral topological space. This provides a
fully faithful embedding of the∞-category of coherent∞-topoi into that of coherent
constructible stratified∞-topoi.

To explain this point, let us first recall the equivalence between coherent locales and
spectral topological spaces.

9.6.1 Recollection. Let 𝐴 be a locale. An object 𝑎 ∈ 𝐴 is quasicompact25 if and only if
for every subset 𝑆 ⊂ 𝐴 such that∐𝑠∈𝑆 𝑠 = 𝑎, there exists a finite subset 𝑆0 ⊂ 𝑆 such that
∐𝑠∈𝑆0 𝑠 = 𝑎.

One says that𝐴 is coherent if and only if𝐴 is coherent in the sense of Definition 5.3.1.
Proposition 5.5.6 shows that this is the case if and only if the following conditions are
satisfied:

→ The quasicompact elements of𝐴 form a sublattice of𝐴: themaximal element 1𝐴 ∈
𝐴 is quasicompact and binary products (=meets) of quasicompact elements are
quasicompact.

→ The quasicompact elements of 𝐴 generate 𝐴: every element 𝑎 ∈ 𝐴 can be written
as a coproduct (=join) 𝑎 = ∐𝑠∈𝑆 𝑠, where 𝑆 ⊂ 𝐴 is a subset consisting of quasi-
compact elements of 𝐴.

A morphism𝐴 → 𝐴′ between coherent locales is coherent if and only if the correspond-
ing map of posets 𝐴′ → 𝐴 sends quasicompact elements to quasicompact elements.

We write Topcoh
0 for the category of coherent locales and coherent morphisms be-

tween them (cf. Corollary 5.6.12).

9.6.2 Example. Let 𝑿 be an∞-topos. Then an open 𝑈 ∈ Open(𝑿) is a quasicompact
element of the locale Open(𝑿) if and only if𝑈 is a quasicompact (i.e., 0-coherent) object
of the∞-topos𝑿.

25Such elements are sometimes called finite; see [51, Chapter II, §3.1].
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The following three results are immediate from the definitions and Example 9.6.2.

9.6.3 Lemma. For any 1-coherent∞-topos𝑿, the locale Open(𝑿) is coherent.

9.6.4 Lemma. Let 𝑓∗ ∶ 𝑿 → 𝒀 be a coherent geometric morphism between coherent∞-
topoi. Then the induced morphism Open(𝑿) → Open(𝒀) of coherent locales is coherent.

9.6.5 Corollary. Let 𝑆 be a spectral topological space and 𝑓∗ ∶ 𝑿 → 𝑆 an 𝑆-stratified∞-
topos. If 𝑿 is coherent, then 𝑓∗ is a constructible stratification if and only if the induced
morphism of coherent locales Open(𝑿) → Open(𝑆) is coherent.

The following classical result is an important recognition principle for coherent lo-
cales.

9.6.6 Proposition ([51, Chapter II, §§3.3–3.4]). The functor Open ∶ TSpcspec → Top0
given by sending a spectral topological space 𝑆 to its locale of opens subsets factors through
Topcoh
0 and defines an equivalence of categories

Open ∶ TSpcspec ⥲ Topcoh
0 .

9.6.7. The functor Open ∶ TSpcspec ⥲ Topcoh
0 has an explicit inverse Topcoh

0 ⥲ TSpcspec
given by taking the topological space of points of a locale; see [51, Chapter II, §1.3].

9.6.8 Notation. Lemma 9.6.4 and Proposition 9.6.6 provide a functor

𝑆∶ Topcoh
∞ Topcoh

0 TSpcspec ,Open ∼

which we denote by 𝑆. By definition, the 0-localic reflection of a coherent∞-topos𝑿 is
given by the∞-topos of sheaves on the spectral topological space 𝑆(𝑿). Thus 𝑿 comes
equipped with a natural 𝑆(𝑿)-stratification𝑿 → 𝑆(𝑿).

The localisation Top∞ ⇄ Top0 thus restricts to a localisation Topcoh
∞ ⇄ Topcoh

0 .

9.6.9 Lemma. For any coherent∞-topos 𝑿, the natural stratification 𝑓∗ ∶ 𝑿 → 𝑆(𝑿) is
constructible (Definition 9.5.4).

Proof. Clear from Corollary 9.6.5 and the fact that 𝑓∗ ∶ 𝑿 → 𝑆(𝑿) induces an equiva-
lence of locales

Open(𝑿) ⥲ Open(𝑆(𝑿)) = Open(𝑆(𝑿)) .

9.6.10. The source functor StrTop∧,cc∞ → Topcoh
∞ admits a fully faithful left adjoint, given

by the the assignment
𝑿 ↦ [𝑿 → 𝑆(𝑿)] .

The essential image of this left adjoint is the full subcategory spanned by those coherent
constructible stratified∞-topoi 𝑿 → 𝑆 such that the stratification induces an equiva-
lence of locales Open(𝑿) ⥲ Open(𝑆).

The source functor StrTop∧,cc∞ → Topcoh
∞ also admits a fully faithful right adjoint,

which carries a coherent∞-topos 𝑿 to 𝑿 again, equipped with the essentially unique
stratification over 𝑺 = {̃0}.
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9.7 Stratified spaces & profinite stratified spaces as stratified∞-topoi
We now extend the functor Str𝜋 → StrTop∞ given by𝛱 ↦ 𝛱̃ to a functor on profinite
stratified spaces.

9.7.1 Notation. Denote by 𝜆∶ Str → StrTop∞ the left exact functor over poSet that is
defined by the assignment 𝛱 ↦ 𝛱̃. For each poset 𝑃, we consider also the functor on
fibres 𝜆𝑃 ∶ Str𝑃 → StrTop∞,𝑃.

In light of Example 9.4.2, if 𝑃 is finite, then the diagram

Str𝜋,𝑃 StrTopbcc
∞,𝑃

Déc𝑃(𝑺𝜋) Déc𝑃(Topbc
∞)

𝑁𝑃 ≀

𝜆𝑃

𝑵𝑃≀

𝜆{0}∘−

commutes, where the vertical functors are equivalences (Definition 2.5.2, (4.2.5), and
Theorem 9.4.3).

Wenow show that the functor𝜆 is fully faithful.Wefirst describe stratified geometric
morphisms 𝑿 → 𝛱̃ in a more familiar fashion. Let us begin with the case in which the
base poset is trivial.

9.7.2. In light of Recollection 5.1.6=[HTT, Corollary 6.3.5.6], if 𝛱 is an essentially 𝛿0-
small space, then one has an equivalence

MapPro(𝑺)(𝛱∞(𝑿),𝛱) ⥲ Fun∗(𝑿, 𝛱̃) ,

where 𝛱∞(𝑿) is the shape prospace 𝛤𝑿,∗𝛤∗𝑿 ∶ 𝑺 → 𝑺 (Definition 5.13.1). In particular,
Fun∗(𝑿, 𝛱̃) is an essentially 𝛿0-small Kan complex.

In this case, one also deduces that if𝛱,𝛱′ are two essentially 𝛿0-small spaces, then
the natural map Map𝑺(𝛱′, 𝛱) → MapTop∞(𝛱̃

′, 𝛱̃) is an equivalence.

Now we extend this result to the context of 𝑃-stratified∞-topoi.

9.7.3 Notation. Let 𝑃 be a finite poset, and let 𝑓∗ ∶ 𝑿 → 𝑃 and 𝑔∗ ∶ 𝒀 → 𝑃 be 𝑃-
stratified∞-topoi. Let us write

Fun𝑃,∗(𝑿, 𝒀) ≔ Fun∗(𝑿, 𝒀) ×Fun∗(𝑿,𝑃) {𝑓∗} .

The mapping space MapStrTop∞,𝑃(𝑿, 𝒀) is the interior of Fun𝑃,∗(𝑿, 𝒀).
If𝑿 and 𝒀 are bounded coherent and constructibly stratified, then in light of Theo-

rem 9.4.3, one has an equivalence of∞-categories

Fun𝑃,∗(𝑿, 𝒀) ≃ ∫
𝛴∈sdop(𝑃)

Fun∗(𝑵𝑃(𝑿)(𝛴),𝑵𝑃(𝒀)(𝛴)) .

This implies the following.
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9.7.4 Proposition. If 𝑃 is a finite poset, and 𝑿 is a bounded coherent constructible 𝑃-
stratified∞-topos, then for any𝜋-finite𝑃-stratified space𝛱, one has a natural equivalence

Fun𝑃,∗(𝑿, 𝛱̃) ≃ ∫
𝛴∈sdop(𝑃)

MapPro(𝑺)(𝛱∞(𝑵𝑃(𝑿)(𝛴)),𝑁𝑃(𝛱)(𝛴)) .

Since the right hand side is a 𝛿0-small limit of 𝛿0-small Kan complexes, we obtain the
following.

9.7.5Corollary. If𝑃 is a finite poset, and𝑿 is a bounded coherent constructible𝑃-stratified
∞-topos, then for any 𝜋-finite 𝑃-stratified space 𝛱, the∞-category Fun𝑃,∗(𝑿, 𝛱̃) is an
essentially 𝛿0-small∞-groupoid.

Additionally, the full faithfulness of 𝜆{0} now implies the following.

9.7.6 Corollary. For any finite poset and any two 𝜋-finite 𝑃-stratified spaces 𝛱 and 𝛱′,
the functor

Map𝑃(𝛱′, 𝛱) → Fun𝑃,∗(𝛱′, 𝛱̃)

is an equivalence. That is, the functor 𝜆𝑃 is a fully faithful functor Str𝜋,𝑃 ↪ StrTopbcc
∞,𝑃.

Finally, we obtain:

9.7.7 Corollary. If 𝑃 is a finite poset, then for any bounded coherent constructible 𝑃-
stratified∞-topos𝑿 and any filtered diagram𝛱∶ 𝐴 → Str of 𝜋-finite 𝑃-stratified spaces,
the natural map

colim
𝛼∈𝐴

MapStrTop∞(𝑿, 𝛱̃𝛼) → MapStrTop∞(𝑿, colim𝛼∈𝐴 𝛱̃𝛼)

is an equivalence.

9.7.8. Please observe that the functor 𝜆∶ Str𝜋 ↪ StrTopbcc
∞ is left exact. This is because

the functor poSet fin → Topbc
∞ given by 𝑃 ↦ 𝑃 is left exact, and for any finite poset 𝑃,

the functor
𝜆𝑃 ∶ Str𝜋,𝑃 → StrTopbcc

∞,𝑃

is left exact, since as a functorDéc𝑃(𝑺𝜋) → Déc𝑃(Topbc
∞) it is equivalent to composition

with 𝜆{0}.

9.7.9Construction. Since bounded coherent constructible stratified∞-topoi are closed
under the formation of inverse limits, we can now apply (0.3.2) and extend 𝜆 to a functor

𝜆̂ ∶ Str∧𝜋 → StrTop∧,𝑏𝑐𝑐∞

over TSpcspec, which we write as the assignment𝜫 ↦ 𝜫̃.
Let us caution that if 𝑆 is a spectral topological space and𝛱 is a profinite 𝑆-stratified

space, then although 𝑆 determines and is determined by the mat(𝑆)-stratified space
mat(𝛱), the∞-topoi 𝛱̃ and m̃at(𝛱) are quite different in general. The latter is always a
presheaf∞-category, but the former is typically not.
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9.7.10 Proposition. The functor 𝜆̂ is fully faithful. In particular, if 𝑆 is a spectral topolog-
ical space, then we obtain a fully faithful functor Str∧𝜋,𝑆 ↪ StrTop∧,bcc∞,𝑆 .

Proof. First we treat the case in which 𝑆 = 𝑃 is a finite poset. In this case, in light of the
equivalences

Str∧𝜋,𝑃 ≃ Déc𝑃(𝑺∧𝜋) and StrTopbcc
∞,𝑃 ≃ Déc𝑃(Topbc

∞)

of Construction 4.3.3 and Theorem 9.4.3, it suffices to prove that the functor

Déc𝑃(𝑺∧𝜋) → Déc𝑃(Topbc
∞)

given by the objectwise application of 𝜆̂{0} ∶ Str∧𝜋 → Topbc
∞ is fully faithful. This follows

as in Corollary 9.7.6 from the full faithfulness of the functor 𝑺∧𝜋 → Topbc
∞.

Now for a more general spectral topological space 𝑆, the identifications

Str∧𝜋,𝑆 ≃ lim
𝑃∈FC(𝑆)

Str∧𝜋,𝑃 and StrTop∧,bcc∞,𝑆 ≃ lim
𝑃∈FC(𝑆)

StrTopbcc
∞,𝑃 ,

the first of which is Proposition 3.2.5 and the latter of which is obvious, together com-
plete the proof.

9.7.11 Proposition. Let 𝑃 be a finite poset. Then the essential image of the functor

Déc𝑃(𝑺∧𝜋) → Déc𝑃(Topbc
∞)

given by the objectwise application of 𝜆̂{0} ∶ Str∧𝜋 → Topbc
∞ is the the full subcategory

Déc𝑃(TopStone
∞ ) ⊂ Déc𝑃(Topbc

∞) spanned by those décollages over 𝑃 that carry each string
to a Stone∞-topos.

Proof. The only nontrivial point to verify is that indeed 𝜆̂ carries décollages in profinite
spaces to décollages in Stone∞-topoi. This follows from Example 8.7.6.

The essential image of 𝜆̂ can be characterised as the∞-category of spectral∞-topoi,
to which we shall now turn.

10 Spectral higher topoi
In this section, we define the notion of a spectral∞-topos. The idea is that, on one hand,
these are the kinds of∞-topoi that arise as the étale∞-topoi of coherent schemes, and
on the other, these will turn out to be precisely the∞-topoi that arise as 𝜫̃ for some
profinite stratified space𝜫.

We begin with some preliminary results on the interaction between Stone∞-topoi
and oriented fibre products.
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10.1 Stone∞-topoi & oriented fibre products
In this subsection we prove two useful facts about oriented fibre products involving
Stone∞-topoi.

10.1.1 Proposition. Let 𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 be geometric morphisms of∞-
topoi. If 𝒁 is Stone, then the natural geometric morphism 𝑿 ×𝒁 𝒀 → 𝑿 ×⃖𝒁 𝒀 is an equiv-
alence.

Proof. It suffices to show that the projections pr1,∗, pr2,∗ ∶ Path(𝒁) → 𝒁 are equiva-
lences. Since 𝒁 is Stone, by Lemma 6.7.6 the ∞-topos Path(𝒁) is bounded coherent,
and Theorem 5.14.9=[SAG, Theorem E.3.4.1] shows that the ∞-category Pt(𝒁) is an
∞-groupoid. Thus

Pt(Path(𝒁)) ≃ Fun(𝛥1,Pt(𝒁))
is an∞-groupoid aswell, and again appealing toTheorem5.14.9=[SAG,TheoremE.3.4.1]
we conclude that Path(𝒁) is Stone. The claim now follows from the fact that pr1,∗ and
pr2,∗ are shape equivalences (Example 7.3.6).

10.1.2 Proposition. Let𝑿 and𝒀 be Stone∞-topoi,𝒁 a bounded coherent∞-topos, and
𝑓∗ ∶ 𝑿 → 𝒁 and 𝑔∗ ∶ 𝒀 → 𝒁 coherent geometric morphisms. Then the oriented fibre
product𝑿 ×⃖𝒁 𝒀 is a Stone∞-topos.

Proof. ByLemma6.7.6 the∞-topos𝑿×⃖𝒁𝒀 is bounded coherent, so byTheorem5.14.9=
[SAG, Theorem E.3.4.1] it suffices to prove that the∞-category Pt(𝑿 ×⃖𝒁 𝒀) is an∞-
groupoid. In light of Lemma 6.5.8 we have Pt(𝑿 ×⃖𝒁 𝒀) ≃ Pt(𝑿) ↓Pt(𝒁) Pt(𝒀), so the fact
that Pt(𝑿) and Pt(𝒀) are∞-groupoids implies that the∞-category Pt(𝑿 ×⃖𝒁 𝒀) is as
well.

10.2 Spectral∞-topoi & toposic décollages
In this subsection we define the∞-toposic generalisation of spectral topological spaces
relevant for our∞-Categorical Hochster Duality Theorem (Theorem 10.3.1).

10.2.1Definition. Let 𝑆 be a spectral topological space. An 𝑆-stratified∞-topos𝑿 → 𝑆
is a spectral 𝑆-stratified∞-topos if and only if the following conditions are satisfied.

→ The∞-topos𝑿 is bounded and coherent.

→ The stratification by 𝑆 is constructible.

→ For every point 𝑠 ∈ 𝑆, the stratum𝑿𝑠 is a Stone∞-topos.

We write StrTopspec
∞,𝑆 ⊂ StrTop∧,bcc∞,𝑆 for the full subcategory spanned by the spectral 𝑆-

stratified∞-topoi.
More generally, write

StrTopspec
∞ ⊂ StrTop

∧,bcc
∞
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for the full subcategory whose objects are spectral∞-topoi and whose morphisms are
squares

𝑿′ 𝑿

𝑆′ 𝑆
of coherent geometric morphisms. We observe that the pullback of a spectral∞-topos
along the geometric morphism induced by a quasicompact continuous map is again
spectral, whence the functor StrTopspec

∞ → TSpcspec is a cartesian fibration.

10.2.2 Example. Let𝜫 → 𝑆 be a profinite stratified space (Definition 3.2.1). Then 𝜫̃ is
a spectral∞-topos, as the fibres 𝜫̃𝑠 ≃ 𝜫𝑠 are Stone∞-topoi.

10.2.3. In Theorem 10.3.1, we will prove the central∞-Categorical Hochster Duality
Theorem, which states that every spectral∞-topos is of the form 𝜫̃ for some profinite
stratified space.

10.2.4 Example. Let𝑋 be a coherent scheme.Write𝑋zar for its underlying Zariski spec-
tral topological space, and let 𝑋ét denote its coherent, 1-localic étale ∞-topos. Since
Open(𝑋ét) ≅ Open(𝑋zar), the natural stratification of the coherent∞-topos 𝑋ét from
§9.6 is given by the natural geometric morphism 𝑋ét → 𝑋zar. For any point 𝑥 ∈ 𝑋zar,
the stratum (𝑋ét)𝑥 is identified with (Spec 𝜅(𝑥))ét, which is the Stone∞-topos 𝐵𝐺𝜅(𝑥).
Consequently𝑋ét is a spectral∞-topos.

10.2.5 Proposition. Let 𝑆 be a spectral topological space, and let𝑿 be a bounded coherent
constructible 𝑆-stratifed∞-topos. Then𝑿 is spectral if and only if the functor

Pt(𝑿) → Pt(𝑆) ≃ mat(𝑆)

exhibits Pt(𝑿) as a mat(𝑆)-stratified space.

Proof. This follows directly from Theorem 5.14.9=[SAG, Theorem E.3.4.1].

10.2.6. Let 𝑃 be a finite poset. We now consider the nerve of a spectral 𝑃-stratified∞-
topos 𝑿 → 𝑃. Since each stratum 𝑿𝑝 is Stone, it follows from Proposition 10.1.2 that
for any string {𝑝0 ≤ ⋯ ≤ 𝑝𝑛} ⊆ 𝑃, the value

𝑵𝑃(𝑿){𝑝0 ≤ ⋯ ≤ 𝑝𝑛} ≃ 𝑿𝑝0 ×⃖𝑿 𝑿𝑝1 ×⃖𝑿⋯ ×⃖𝑿 𝑿𝑝𝑛
is a Stone∞-topos. Consequently, we deduce that the equivalence

𝑵𝑃 ∶ StrTopbcc
∞,𝑃 ⥲ Déc𝑃(Topbc

∞)

restricts to an equivalence between the∞-category of spectral 𝑃-stratified∞-topoi and
the full subcategoryDéc𝑃(TopStone

∞ ) ⊂ Déc𝑃(Topbc
∞) spanned by those décollages over 𝑃

that carry each string to a Stone∞-topos.

10.2.7 Lemma. Let 𝑃 be a finite poset. Then the nerve equivalence

𝑵𝑃 ∶ StrTopbcc
∞,𝑃 ⥲ Déc𝑃(Topbc

∞)

restricts to an equivalence StrTopspec
∞,𝑃 ⥲ Déc𝑃(TopStone

∞ ).
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10.3 Hochster duality for higher topoi
In (1.3.5) we described Hochster duality as a cube of dualities: the equivalence of 1-
categories between profinite posets and spectral topological spaces restricts on one hand
to an equivalence of 1-categories between profinite sets and Stone spaces, and on the
other to an equivalence of 1-categories betweenfinite posets andfinite topological spaces.
Our objective now is to exhibit the analogous cube for higher topoi:

𝑺𝜋 Top fin
∞

𝑺∧𝜋 TopStone
∞

Str𝜋 StrTop fin
∞

Str∧𝜋 StrTopspec
∞ ,

∼

∼

∼

∼

where the vertical fully faithful functors are given by equipping an object with the trivial
stratification. The top face of this cube was established by Lurie [SAG, Appendix E]. We
must now address the bottom face, more precisely the equivalence Str∧𝜋 ≃ StrTopspec

∞ .
10.3.1Theorem (∞-Categorical Hochster Duality). Let 𝑆 be a spectral topological space.
Then the functor

𝜆̂𝑆 ∶ Str∧𝜋,𝑆 → StrTopspec
∞,𝑆

given by the assignment 𝜫 ↦ 𝜫̃ is an equivalence of ∞-categories. Consequently, the
functor

𝜆̂ ∶ Str∧𝜋 → StrTopspec
∞

is an equivalence of∞-categories.
Proof. Since 𝜆̂ is fully faithful (Proposition 9.7.10) andpreserves inverse limits, it suffices
to prove that for any finite poset 𝑃, the fully faithful functor 𝜆̂ ∶ Str∧𝜋,𝑃 ↪ StrTopspec

∞,𝑃 is
essentially surjective.

This now follows from the conjunction of Lemma 10.2.7 and Proposition 9.7.11.

The back face of the cube is now just a restriction of the front face: we define Top fin
∞

as the full subcategory of TopStone
∞ spanned by the essential image of the fully faithful

functor 𝑺𝜋 ↪ TopStone
∞ given by𝛱 ↦ 𝑺/𝛱 ≃ Fun(𝛱, 𝑺). Then StrTop fin

∞ is the∞-catego-
ry of bounded coherent constructible∞-topoi over a finite poset 𝑃 such that for every
point 𝑝 ∈ 𝑃, the∞-topos𝑿𝑝 is in Top fin

∞ .

10.4 Constructible sheaves
The truncated coherent objects of a Stone ∞-topos are exactly the lisse sheaves (Rec-
ollection 5.14.10). This turns out to be a defining property of Stone∞-topoi (Proposi-
tion 5.14.13=[SAG, Proposition E.3.1.1]). In the same manner, the truncated coherent
objects of a spectral∞-topos are exactly the constructible sheaves, to which we now turn.
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10.4.1 Definition. Let 𝑃 be a noetherian poset and𝑿 a 𝑃-stratified∞-topos. An object
𝐹 ∈ 𝑿 is said to be formally constructible (or formally 𝑃-constructible if disambiguation
is called for) if and only if, for any point 𝑝 ∈ 𝑃, the restriction 𝐹|𝑿𝑝 ≔ 𝑒

∗
𝑝𝐹 ∈ 𝑿𝑝 is a

local system, where 𝑒𝑝,∗ ∶ 𝑿𝑝 ↪ 𝑿 is the inclusion of the 𝑝-th stratum.
We say that 𝐹 is constructible (or 𝑃-constructible) if and only if the following pair of

conditions is satisfied:

→ The object 𝐹 is formally constructible.

→ For any point 𝑝 ∈ 𝑃, the restriction 𝐹|𝑿𝑝 ∈ 𝑿𝑝 is lisse.

10.4.2. Thisnotion of constructibility depends upon thewhole structure of the stratified
∞-topos, not only upon the underlying∞-topos.

10.4.3. For any noetherian poset 𝑃 and 𝑃-stratified∞-topos 𝑿 → 𝑃, the∞-category
of constructible sheaves on𝑿 is given by the pullback of∞-categories:

𝑿𝑃-constr ∏𝑝∈𝑃𝑿lisse
𝑝

𝑿 ∏𝑝∈𝑃𝑿𝑝 ,

⌟

∏𝑝∈𝑃 𝑒∗𝑝

where here∏𝑝∈𝑃𝑿𝑝 is the product in Cat∞,𝛿1 . Lemmas 5.8.4 and 5.8.5 now show that
𝑿𝑃-constr is an∞-pretopos (Definition 5.8.2) and the inclusion 𝑿𝑃-constr ↪ 𝑿 is a mor-
phism of∞-pretopoi.

10.4.4. If 𝑃 is a nonnoetherian poset, Definition 10.4.1 is insufficient, and one needs to
assume also the following convergence condition:

→ for any ideal 𝐴 ⊆ 𝑃, if we write 𝑖𝐴,∗ ∶ 𝑿𝐴 ↪ 𝑿 for the closed immersion, then the
natural morphism

𝑖∗𝐴𝐹 → lim
𝑝∈𝐴op
𝑖𝑝,∗𝑖∗𝑝𝐹

is an equivalence, where 𝑖𝑝,∗ ∶ 𝑿≤𝑝 ↪ 𝑿𝐴 is the inclusion of the closed subtopos.

This condition is automatically satisfied for noetherian stratifications, which are our sole
concern in this text.

The pullback functor in a geometric morphism of∞-topoi preserves lisse objects
(see Recollection 5.14.10); in the same manner, the pullback of a morphism of stratified
∞-topoi preserves constructible objects.

10.4.5 Lemma. Let 𝑓∶ 𝑃′ → 𝑃 be a morphism of noetherian posets, and let 𝑿′ →
𝑃′ and 𝑿 → 𝑃 be stratified∞-topoi. Then for any geometric morphism 𝑞∗ ∶ 𝑿′ → 𝑿
over 𝑓∗ ∶ 𝑃′ → 𝑃, the pullback 𝑞∗ ∶ 𝑿 → 𝑿′ sends 𝑃-constructible objects of 𝑿 to 𝑃′-
constructible objects of𝑿′. Hence 𝑞∗ restricts to a morphism of∞-pretopoi

𝑞∗ ∶ 𝑿𝑃-constr → (𝑿′)𝑃′-constr .
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Proof. Let 𝐹 ∈ 𝑿𝑃-constr be a 𝑃-constructible object of𝑿. Then for any point 𝑝 ∈ 𝑃′, the
restriction 𝐹|𝑿𝑓(𝑝) is lisse, so since the pullback in a geometric morphism preserves lisse
objects, we see that 𝑞∗(𝐹)|𝑿′𝑝 is lisse. Hence 𝑞∗(𝐹) is 𝑃′-constructible.

The fact that 𝑞∗ ∶ 𝑿𝑃-constr → (𝑿′)𝑃′-constr is amorphism of∞-pretopoi is immediate
from (10.4.3).

10.4.6 Proposition. Let 𝑃 be a finite poset and 𝑿 → 𝑃 a 𝑃-stratified∞-topos. Then the
∞-pretopos𝑿𝑃-constr is bounded (Definition 5.8.7).

Proof. If 𝑃 = ∅, then the claim is obvious, so assume that 𝑃 is nonempty. We prove the
claim by induction on the rank of 𝑃.

In the base case where 𝑃 has rank 0, 𝑃 is discrete, so𝑿 is finite the coproduct of∞-
topoi∐𝑝∈𝑃𝑿𝑝 (which is the product∏𝑝∈𝑃𝑿𝑝 in Cat∞,𝛿1). Thus𝑿𝑃-constr is the product
of∞-categories:

𝑿𝑃-constr = ∏
𝑝∈𝑃
𝑿lisse
𝑝 .

By Theorem 5.14.15=[SAG, Theorem E.2.3.2], for all 𝑝 ∈ 𝑃 the ∞-pretopos 𝑿lisse
𝑝 is

bounded; the finiteness of 𝑃 and Lemma 5.8.9 now show that𝑿𝑃-constr is also bounded.
For the induction step, let 𝑛 ≥ 0 be a natural number and assume that the claimholds

for all finite posets 𝑃 of rank 𝑛 and 𝑃-stratified∞-topoi𝑿 → 𝑃. Let 𝑃 be a finite poset
of rank 𝑛 + 1, and write𝑀 ⊂ 𝑃 for the full subposet spanned by the minimal elements
of 𝑃. Then𝑀 is discrete and closed in 𝑃. Write 𝑈 ≔ 𝑃 ∖ 𝑀 for the open complement
of𝑀 in 𝑃. Then 𝑈 is a poset of rank 𝑛. Moreover, since 𝑃 is the recollement of𝑀 and
𝑈̃, the 𝑃-stratified∞-topos 𝑿 is the recollement of 𝑿𝑀 and 𝑿𝑈. An object 𝐹 ∈ 𝑿 is 𝑃-
constructible if and only if 𝐹|𝑿𝑀 and 𝐹|𝑿𝑈 are both constructible, fromwhich we deduce
that𝑿𝑃-constr is the oriented fibre product of∞-categories

𝑿𝑃-constr ≃ 𝑿𝑀-constr
𝑀 ↓𝑿𝑀 𝑿

𝑈-constr
𝑈 .

Since 𝑀 is a poset of rank 0 and 𝑈 is a poset of rank 𝑛, by the induction hypothesis
both𝑿𝑀-constr

𝑀 and𝑿𝑈-constr
𝑈 are bounded∞-pretopoi. To conclude that the∞-pretopos

𝑿𝑃-constr is a bounded, note that by (6.1.2) every object of 𝑿𝑃-constr is truncated and by
(0.4.2) the∞-category𝑿𝑃-constr is essentially 𝛿0-small.

10.4.7 Definition. Let 𝑆 be a spectral topological space and 𝑿 an 𝑆-stratified∞-topos.
We say that an object 𝐹 ∈ 𝑿 is formally constructible (or formally 𝑆-constructible) if and
only if there exist a finite poset 𝑃 and a constructible stratification 𝑆 → 𝑃 of proposets
such that 𝐹 is formally 𝑃-constructible.We say that 𝐹 is constructible (or 𝑆-constructible)
if and only if there exist a poset 𝑃 and a finite constructible stratification 𝑆 → 𝑃 of
proposets such that 𝐹 is 𝑃-constructible.

For any spectral topological space 𝑆 and any 𝑆-stratified∞-topos𝑿 → 𝑆, we denote
by 𝑿𝑆-fconstr ⊆ 𝑿 (respectively, by 𝑿𝑆-constr ⊆ 𝑿) the full subcategory spanned by the
formally constructible objects (respectively, the constructible objects).

10.4.8. For any spectral topological space 𝑆 and 𝑆-stratified∞-topos 𝑿 → 𝑆, the∞-
category of constructible sheaves on𝑿 is thus a filtered colimit of∞-categories:

𝑿𝑆-constr ≃ colim
𝑃∈FC(𝑆)op

𝑿𝑃-constr .
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Thus Lemma 10.4.5 and Proposition 10.4.6 combined with Proposition 5.9.1=[SAG,
Proposition A.8.3.1] show that 𝑿𝑆-constr is a bounded∞-pretopos. Moreover, (10.4.3)
shows that the inclusion𝑿𝑆-constr ↪ 𝑿 is a morphism of∞-pretopoi.

From Lemma 10.4.5 we now immediately deduce the following.

10.4.9 Lemma. Let 𝑓∶ 𝑆′ → 𝑆 be a quasicompact continuous map of spectral topological
spaces, and let 𝑿′ → 𝑆′ and 𝑿 → 𝑆 be stratified∞-topoi. Then for any geometric mor-
phism 𝑞∗ ∶ 𝑿′ → 𝑿 over 𝑓∗ ∶ 𝑆′ → 𝑆, the pullback 𝑞∗ ∶ 𝑿 → 𝑿′ sends 𝑆-constructible
objects of 𝑿 to 𝑆′-constructible objects of 𝑿′. Hence 𝑞∗ restricts to a morphism of∞-pre-
topoi

𝑞∗ ∶ 𝑿𝑆-constr → (𝑿′)𝑆′-constr .

We now turn to the relationship between coherence and constructibility in∞-topoi
stratified by a spectral topological space.

10.4.10 Lemma. Let 𝑆 be a spectral topological space, and let𝑿 be an 𝑆-stratified∞-topos.
Then an object 𝐹 of 𝑿 is constructible if and only if, for every point 𝑠 ∈ 𝑆, there exists a
constructible subset𝑊 ⊆ 𝑆 containing 𝑠 such that 𝐹|𝑿𝑊 is lisse.

Proof. The ‘only if ’ direction is clear. Conversely, assume that every point of 𝑆 is con-
tained in such a constructible set. Hence the collection {𝑊𝛼}𝛼∈𝐴 of constructible subsets
of 𝑆 such that𝐹|𝑿𝑊𝛼 is lisse is a cover of 𝑆 by constructible subsets. Since the constructible
topology on 𝑆 is quasicompact, it follows that there exists a finite subcover {𝑊𝛼}𝛼∈𝐴′ . Se-
lect a finite constructible stratification 𝑆 → 𝑃 of 𝑆 such that for every 𝑝 ∈ 𝑃, there exists
an 𝛼 ∈ 𝐴′ such that the stratum 𝑆𝑝 ⊆ 𝑊𝛼. Now 𝐹 is 𝑃-constructible.

10.4.11 Lemma. Let 𝑆 be a spectral topological space, and 𝑿 → 𝑆 a coherent coherent
constructible 𝑆-stratified∞-topos. Then every constructible object of 𝑿 is truncated and
coherent. If𝑿 is also bounded and every truncated and coherent object of𝑿 is constructible,
then𝑿 is spectral.

Proof. For the first statement, let 𝐹 ∈ 𝑿𝑆-constr, and let 𝑆 → 𝑃 be a finite constructible
stratification such that for every point 𝑝 ∈ 𝑃, the restriction 𝐹|𝑿𝑝 is lisse. By Proposi-
tion 6.1.8=[DAG XIII, Proposition 2.3.22] it follows that 𝐹 is coherent. If each 𝐹|𝑿𝑝 is
𝑁-truncated, then 𝐹 is𝑁-truncated.

For the second statement, if every truncated coherent object of𝑿 is constructible and
𝑿 is bounded, then𝑿 ≃ Sheff(𝑿𝑆-constr). For any point 𝑠 ∈ 𝑆, one thus has an equivalence
𝑿𝑠 ≃ Sheff(𝑿lisse

𝑠 ), which is a Stone∞-topos. Thus𝑿 is spectral.

10.4.12 Proposition. If 𝑆 is a spectral topological space, and 𝑿 is a spectral 𝑆-stratified
∞-topos𝑿, then every truncated and coherent object of𝑿 is constructible.

Proof. Let 𝐹 be a truncated coherent object of 𝑿, and 𝑠 ∈ 𝑆 a point. We wish to show
that there exists a constructible subset of 𝑊 ⊂ 𝑆 containing 𝑠 such that 𝐹|𝑿𝑊 is lisse
(Lemma 10.4.10). Passing to the closure of 𝑠, it suffices to assume that 𝑆 is irreducible,
and 𝑠 is its generic point.

Since 𝐹|𝑿𝑠 is lisse, it follows from Lemma 5.14.11=[SAG, Proposition E.2.7.7] that
there exists a full subcategory 𝐸 ⊂ 𝑺𝜋 spanned by finitely many 𝜋-finite spaces and a
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unique geometricmorphism𝑔∗ ∶ 𝑿𝑠 → 𝑺/𝜄𝐸 and an equivalence 𝜀𝑠 ∶ 𝐹|𝑿𝑠 ⥲ 𝑔
∗(𝐼), where

𝐼 is the inclusion functor 𝐸 ↪ 𝑺. Now since 𝑺/𝜄𝐸 is cocompact as an object of Topbc
∞

(Lemma 5.14.12) and𝑿𝑠 is identified with the limit lim𝑊𝑿𝑊 over constructible subsets
𝑊 ⊂ 𝑆 containing 𝑠, it follows that for some such𝑊, one may factor 𝑔∗ through a geo-
metric morphism 𝑔𝑊,∗ ∶ 𝑿𝑊 → 𝑺/𝜄𝐸. Now since𝑿coh

𝑠,<∞ ≃ colim𝑊𝑿coh
𝑊,<∞, we shrink𝑊

as needed to ensure that there exists an equivalence 𝜀𝑠 ∶ 𝐹|𝑿𝑊 ⥲ 𝑔
∗
𝑊(𝐼), and conclude

that 𝐹 is lisse on𝑊.

10.4.13 Example. If𝑋 is a coherent scheme, then the truncated coherent objects of𝑋ét
are precisely the constructible sheaves of spaces. This is the nonabelian analogue of the
well-known result that for a finite ring𝛬, the compact objects of Shét(𝑋;𝑫(𝛬)) coincide
with the bounded derived∞-category of constructible 𝛬-sheaves.

Wehave shown that the∞-category Str∧𝜋 of profinite stratified spaces is equivalent to
the∞-category StrTopspec

∞ , which is in turn a full subcategory of StrTop∧,bcc∞ of bounded
coherent constructible stratified∞-topoi.This last∞-category is a non-full subcategory
of StrTop∧∞, however. Just as how every geometric morphism between Stone∞-topoi
is coherent (Corollary 5.14.14=[SAG, Corollary E.3.1.2]), the subcategory StrTopspec

∞ ⊂
StrTop∧∞ is full, as we shall now explain.

10.4.14 Proposition. Let 𝑓∶ 𝑆′ → 𝑆 be a quasicompact continuous map of spectral topo-
logical spaces, let 𝑿′ → 𝑆′ be a coherent constructible stratified∞-topos, and let 𝑿 → 𝑆
be a spectral∞-topos. Then any geometric morphism 𝑞∗ ∶ 𝑿′ → 𝑿 over 𝑓∗ ∶ 𝑆′ → 𝑆 is
coherent.

Proof. By Corollary 5.4.5 it suffices to show that if 𝐹 ∈ 𝑿 is truncated and coherent,
then 𝑝∗𝐹 is coherent. By Proposition 10.4.12

𝑿𝑆-constr = 𝑿coh
<∞ ,

so the claimnow follows from the facts that 𝑞∗ preserves constructibility (Lemma10.4.9)
and the 𝑆′-constructible objects of𝑿′ are truncated coherent (Lemma 10.4.11).

10.4.15 Corollary. The subcategory StrTopspec
∞ ⊂ StrTop

∧
∞ is full.

10.4.16 Construction. Let 𝑆 be a spectral topological space, and 𝑿 an 𝑆-stratified∞-
topos. By [SAG, PropositionA.6.4.4], the fully faithful inclusion𝑿𝑆-constr ↪ 𝑿 of∞-pre-
topoi extends (essentially uniquely) to a geometric morphism 𝑿 → Sheff(𝑿𝑆-constr) over
𝑆. By construction, the 𝑆-stratified∞-topos

𝑿𝑆-spec ≔ Sheff(𝑿𝑆-constr)

is spectral. Furthermore, 𝑿𝑆-spec is the universal spectral 𝑆-stratified∞-topos receiving
a geometric morphism over 𝑆 from𝑿. Thus the assignment

𝑿 ↦ 𝑿𝑆-spec

provides a relative left adjoint to the inclusion StrTopspec
∞ ↪ StrTop∧∞ over TSpcspec,

which we call the spectrification. This is the stratified analogue of the Stone reflection
(Theorem 5.14.15).
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10.4.17 Example. When 𝑆 = [𝑛], the spectrification of a bounded coherent∞-topos
𝑿 equipped with a constructible stratification by [𝑛] can be identified as an iterated
bounded coherent oriented pushout:

𝑿[𝑛]-spec ≃ 𝑿Stone
0 ∪⃖

(𝑿0×𝑿𝑿1)Stone
bc ⋯ ∪⃖(𝑿𝑛−1×𝑿𝑿𝑛)

Stone

bc 𝑿Stone
𝑛 .

10.4.18 Construction. Thanks to the existence of the spectrification functor, we de-
duce the forgetful functor StrTopspec

∞ → TSpcspec is a cocartesian fibration (as well as a
cartesian fibration): for any quasicompact continuous map 𝑓∶ 𝑆′ → 𝑆 and any spectral
𝑆′-stratified∞-topos𝑿, the stratified geometricmorphism𝑿 → 𝑿𝑆-spec is a cocartesian
edge over 𝑓.

10.4.19 Lemma. Let 𝑆 be a spectral topological space. Then the natural functor

StrTopspec
∞,𝑆 → lim

𝑃∈FC(𝑆)
StrTopspec

∞,𝑃

is an equivalence of∞-categories.

Proof. The formation of the limit is an inverse.

11 Profinite stratified shape
In this section we investigate the inverse to the equivalence of∞-categories

𝜆̂ ∶ Str∧𝜋 ⥲ StrTopspec
∞

provided by∞-Categorical Hoschster Duality.This inverse equivalence provides a strat-
ified refinement of the profinite shape (Example 11.1.6).

11.1 The definition of the profinite stratified shape
11.1.1 Construction. We have constructed (Theorem 10.3.1) an equivalence of∞-cat-
egories 𝜆̂ ∶ Str∧𝜋 ⥲ StrTopspec

∞ over TSpcspec, given by the assignment 𝜫 ↦ 𝜫̃. The
further inclusion StrTopspec

∞ ↪ StrTop∧∞ admits a left adjoint, given by spectrification
(Construction 10.4.16). We therefore obtain an adjunction

𝛱∧(∞,1) ∶ StrTop∧∞ ⇄ Str∧𝜋 ∶̂𝜆

in which the left adjoint carries a stratified∞-topos 𝑿 → 𝑆 to the profinite 𝑆-stratified
space that as a left exact accessible functor Str𝜋 → 𝑺 is given by

𝛱 ↦ MapStrTop∧∞(𝑿, 𝛱̃) .

Over any spectral topologcial space 𝑆, we obtain an adjunction

𝛱𝑆,∧(∞,1) ∶ StrTop∧∞,𝑆 ⇄ Str∧𝜋,𝑆 ∶̂𝜆𝑆

over 𝑆.
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11.1.2 Example. For any spectral topological space 𝑆 and any profinite 𝑆-stratified space
𝜫, we have𝛱𝑆,∧(∞,1)(𝜫̃) ≃ 𝜫.

11.1.3 Example. The functor𝛱{0},∧(∞,1) is the profinite shape of Definition 5.14.2.

11.1.4 Definition. Let 𝑆 be a spectral topological space, and let𝑿 → 𝑆 be an 𝑆-stratified
∞-topos. Then we call the profinite 𝑆-stratified space 𝛱𝑆,∧(∞,1)(𝑿) the 𝑆-stratified homo-
topy type of𝑿.
11.1.5. Since left adjoints compose, if 𝜂∶ 𝑆′ → 𝑆 is a quasicompact continuous map of
spectral topological spaces, then there is a natural equivalence

𝜂!𝛱𝑆
′,∧
(∞,1) ⥲ 𝛱𝑆,∧(∞,1) .

11.1.6 Example. For any bounded coherent constructible 𝑆-stratified∞-topos 𝑿, the
homotopy type 𝛱∧∞(𝑿) is the classifying profinite space of the profinite ∞-category
𝛱𝑆,∧(∞,1)(𝑿); thus the stratification on 𝑿 gives rise to a delocalisation of its homotopy
type.

Combining∞-CategoricalHochsterDuality (Theorem10.3.1)with Proposition 10.4.12
we deduce the Exodromy Equivalence stated as Theorem B in the introduction.

11.1.7 Theorem (Exodromy Equivalence for Stratified∞-Topoi ). Let 𝑆 be a spectral
topological space and 𝑿 an 𝑆-stratified∞-topos. Then the unit 𝑿 → 𝛱̃𝑆,∧(∞,1)(𝑿) of the
adjunction to profinite stratified spaces restricts to an equivalence

Fun(𝛱𝑆,∧(∞,1)(𝑿), 𝑺𝜋) ≃ 𝑿𝑆-constr .

11.2 Recovering the protruncated shape from the profinite stratified
shape

In Example 11.1.6 we saw how to recover the the profinite shape 𝛱∧∞(𝑿) of a spectral
stratified∞-topos 𝑿 from its profinite stratified shape𝛱∧(∞,1)(𝑿) by ‘inverting all mor-
phisms’ in a suitable sense. This delocalisation result essentially comes for free from the
functoriality of the profinite stratified shape. In this subsection prove a stronger delocal-
isation result (Theorem 11.2.3): the profinite stratified shape is a delocalisation of the
protruncated shape.26

The equivalence Str∧𝜋 ≃ StrTopspec
∞ provided by ∞-categorical Hochster Duality

(Theorem 10.3.1) provides a way to recover the shape of a spectral∞-topos from its
profinite stratified shape, via the composite

Str∧𝜋 StrTopspec
∞ Topbc

∞ Pro(𝑺) ,∼ 𝛱∞

where the middle functor functor forgets the stratification. There is another functor
𝐻∶ Str∧𝜋 → Pro(𝑺) that doesn’t require the use of∞-topoi, namely, the extension to
pröbjects of the composite

Str𝜋 Cat∞ 𝑺 ,𝐻

26The contents of this subsection originally appeared in a short preprint by the third-named author [31].
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where the first functor forgets the stratification and the second functor sends an∞-cat-
egory 𝐶 to the∞-groupoid 𝐻(𝐶) obtained by inverting every morphism in 𝐶 (Nota-
tion 5.13.3). It follows formally that these two functors agree on Str𝜋:

11.2.1 Lemma. The square

Str𝜋 StrTopspec
∞

𝑺 Pro(𝑺)

𝜆̂

𝐻 𝛱∞

ょ

commutes.

Proof. By the definition of the equivalence 𝜆̂ ∶ Str∧𝜋 ⥲ StrTopspec
∞ (Theorem 10.3.1), the

following square commutes

Str𝜋 StrTopspec
∞

Cat∞ Top∞ ,

𝜆̂

Fun(−,𝑺)

where the vertical functors forget stratifications. Combining this with Example 5.13.4
proves the claim.

11.2.2. Since the functor 𝐻∶ Str∧𝜋 → Pro(𝑺) preserves inverse limits, Lemma 11.2.1
provides a natural transformation

𝜃∶ 𝛱∞ ∘ 𝜆̂ → 𝐻 .

11.2.3Theorem. The natural transformation

𝜏<∞𝜃∶ 𝛱<∞ ∘ 𝜆̂ → 𝜏<∞𝐻

of functors Str∧𝜋 → Pro(𝑺<∞) is an equivalence.

Proof. Since the forgetful functor StrTopspec
∞ → Topbc

∞ preserves inverse limits, Corol-
lary 5.13.16 implies that the protruncated shape 𝛱<∞ ∶ StrTopspec

∞ → Pro(𝑺<∞) pre-
serves inverse limits. Both 𝜏<∞ and 𝐻 preserve inverse limits, hence their composite
𝜏<∞𝐻∶ Str∧𝜋 → Pro(𝑺<∞) preserves inverse limits. The claim now follows from the fact
that 𝜃 is an equivalence when restricted to Str𝜋 (Lemma 11.2.1) and the universal prop-
erty of the∞-category Str∧𝜋 of profinite stratified spaces.

11.3 Points & materialisation
We now provide a stratified refinement of (5.14.6), which allows us to prove a ‘White-
head Theorem’ for profinite stratified spaces, and effectively speak of 𝑛-truncated profi-
nite stratified spaces via materialisation.
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11.3.1. Let 𝑆 be a spectral topological space, and let 𝑿 be an 𝑆-stratified∞-topos. The
∞-category of points of𝑿 is

Pt(𝑿) = Fun∗(𝑺, 𝑿)op ≃ FunStrTop∧∞,∗({̃0}, 𝑿)
op .

Since𝛱∧(∞,1)({̃0}) ≃ ∗, applying𝛱∧(∞,1) yields a natural functor

Pt(𝑿) → FunStr∧𝜋 (∗,𝛱
∧
(∞,1)(𝑿)) ≃ mat𝛱∧(∞,1)(𝑿) .

In the case where 𝑿 is a spectral∞-topos, then∞-Categorical Hochster Duality
(Theorem 10.3.1) implies the following stratified refinement of (5.14.6).

11.3.2 Lemma. If𝑿 is a spectral∞-topos, then the natural morphism

Pt(𝑿) → mat𝛱∧(∞,1)(𝑿)

of stratified spaces is an equivalence.

Now we can deduce a stratified refinement of Whitehead’s Theorem for profinite
spaces (Theorem 5.14.7=[SAG, Theorem E.3.1.6]).

11.3.3Theorem (Profinite Stratified Whitehead Theorem). The materialisation functor
mat ∶ Str∧𝜋 → Str is conservative.

Proof. Let 𝑓∶ 𝜫 → 𝜫′ be a morphism in Str∧𝜋 and assume that mat(𝑓) is an equiva-
lence in Str. Write 𝑓∗ ∶ 𝜫̃ → 𝜫̃′ for the induced morphism of spectral∞-topoi. From
Lemma 11.3.2 we deduce that

Pt(𝑓∗) ∶ Pt(𝜫̃) → Pt(𝜫̃′)

is an equivalence of∞-categories. Conceptual Completeness (Theorem 5.11.2=[SAG,
Theorem A.9.0.6]) implies that 𝑓∗ is an equivalence of∞-topoi. The full faithfulness of
the functor𝜫 ↦ 𝜫̃ completes the proof.

We can employ the Profinite Stratified Whitehead Theorem to study the Postnikov
tower of profinite stratified spaces.

11.3.4Definition. Let 𝑛 ∈ 𝑵. A profinite stratified space𝜫 → 𝑆 is said to be𝑛-truncated
if and only if𝜫 can be exhibited as an inverse limit of finite 𝑛-truncated𝜋-finite stratified
spaces. Equivalently, if we extend ℎ𝑛 ∶ Str𝜋 → Str𝜋 to an inverse-limit preserving functor
ℎ𝑛 ∶ Str∧𝜋 → Str∧𝜋, then an 𝑛-truncated profinite space is one in the essential image of ℎ𝑛.

We write (Str∧𝜋)≤𝑛 ⊂ Str∧𝜋 for the full subcategory spanned by the 𝑛-truncated profi-
nite stratified spaces.

11.3.5 Lemma. Let 𝑛 ∈ 𝑵, and let 𝑆 be a spectral topological space. Then a profinite
stratified space 𝜫 → 𝑆 is 𝑛-truncated if and only if, for all 𝑠, 𝑡 ∈ mat(𝑆) with 𝑠 ≤ 𝑡, the
induced morphism

𝑁mat(𝑆)(𝜫){𝑠, 𝑡} → 𝜫𝑠 × 𝜫𝑡
is an (𝑛 − 1)-truncated morphism of 𝑺∧𝜋.
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Proof. If 𝜫 is exhibited as a sequence {𝛱𝛼 → 𝑃𝛼}𝛼∈𝐴 of 𝜋-finite 𝑛-truncated stratified
spaces, then express 𝑠 and 𝑡 as sequences {𝑠𝛼}𝛼∈𝐴 and {𝑡𝛼}𝛼∈𝐴 of points. So the sequence

{𝑁𝑃𝛼(𝛱𝛼){𝑠𝛼, 𝑡𝛼} → 𝛱𝑠𝛼 × 𝛱𝑡𝛼}𝛼∈𝐴 ,

which exhibits the morphism𝑁mat(𝑆)(𝜫){𝑠, 𝑡} → 𝜫𝑠 × 𝜫𝑡 of 𝑺∧𝜋, is (𝑛 − 1)-truncated.
Conversely, assume that𝜫 is exhibited as a sequence {𝛱𝛼 → 𝑃𝛼}𝛼∈𝐴 of 𝜋-finite strat-

ified spaces, and that for any 𝑠, 𝑡 ∈ mat(𝑆) with 𝑠 ≤ 𝑡, the morphism𝑁mat(𝑆)(𝜫){𝑠, 𝑡} →
𝜫𝑠 × 𝜫𝑡 of 𝑺∧𝜋 is (𝑛 − 1)-truncated. Now consider ℎ𝑛𝜫 ≔ {ℎ𝑛𝛱𝛼 → 𝑃𝛼}𝛼∈𝐴 and the
natural morphism𝜫 → ℎ𝑛𝜫. To see that this morphism is an equivalence, we may pass
to the materialisation by Theorem 11.3.3, where it is obvious.

11.3.6 Lemma. Let 𝑛 ∈ 𝑵. A profinite stratified space𝜫 → 𝑆 is 𝑛-truncated if and only
if mat(𝜫) ∈ Str is 𝑛-truncated in the sense of Definition 2.4.4.

Proof. For 𝑠, 𝑡 ∈ mat(𝑆) with 𝑠 ≤ 𝑡, we have

mat(𝑁mat(𝑆)(𝜫){𝑠, 𝑡}) ≃ 𝑁mat(𝑆)(mat(𝜫)){𝑠, 𝑡} .

By Proposition 5.14.8=[SAG, Proposition E.4.6.1] and the fact that materialisation is a
right adjoint, we see that a profinite stratified space 𝜫 is 𝑛-truncated if and only if the
morphism

𝑁mat(𝑆)(mat(𝜫)){𝑠, 𝑡} → mat(𝜫)𝑠 ×mat(𝜫)𝑡
is an (𝑛 − 1)-truncated morphism of spaces, which is true if and only if mat(𝜫) is 𝑛-
truncated in the sense of Definition 2.4.4.

Under∞-Categorical Hochster Duality (Theorem 10.3.1) 𝑛-localic spectral strati-
fied∞-topoi correspond to 𝑛-truncated profinite stratified spaces:

11.3.7 Proposition. Let 𝑿 be a spectral ∞-topos and 𝑛 ∈ 𝑵. Then the following are
equivalent:

→ The∞-topos𝑿 is 𝑛-localic.

→ The∞-category Pt(𝑿) of points of𝑿 is an 𝑛-category.

→ The profinite stratified shape𝛱∧(∞,1)(𝑿) is an 𝑛-truncated profinite stratified space.

Proof. If𝑿 is 𝑛-localic, then the∞-category Pt(𝑿) is an 𝑛-category, which shows that

mat𝛱∧(∞,1)(𝑿) ≃ Pt(𝑿)

is an 𝑛-category (Lemma 11.3.2). Applying Lemma 11.3.6 we see that 𝛱∧(∞,1)(𝑿) is an
𝑛-truncated profinite stratified space.

If 𝛱∧(∞,1)(𝑿) is an 𝑛-truncated profinite stratified space, then 𝛱∧(∞,1)(𝑿) can be ex-
hibited as an inverse system {𝛱𝛼}𝛼∈𝐴 of 𝑛-truncated 𝜋-finite stratified spaces. Thus

𝑿 ≃ 𝛱̃∧(∞,1)(𝑿) ≃ lim𝛼∈𝐴 𝛱̃𝛼

is an 𝑛-localic∞-topos.
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11.3.8. Combining the preceding with ordinary Stone Duality between profinite sets
and Stone topological spaces, the functor Pt ∶ (Str∧𝜋)≤1 → Cat1 factors through a fully
faithful functor (Str∧𝜋)≤1 ↪ Cat(TSpcStone) from the 2-category of 1-truncated profinite
stratified spaces to the 2-category of category objects in the category of Stone topological
spaces. The essential image of this functor is spanned by the layered category objects –
i.e., the ones in which every endomorphism is an isomorphism.

11.4 Stratified homotopy types via décollages
To identify the functor𝛱∧(∞,1) in terms of the usual homotopy type𝛱∧∞, we can pass to
the décollage over 𝑃.
11.4.1 Construction. Let 𝑃 be a finite poset. Let us consider the functor

𝜆̂déc𝑃 ∶ Déc𝑃(𝑺∧𝜋) → Déc𝑃(Topbc
∞)

given by composition with 𝜆{0}, so that a profinite spatial décollage𝐷∶ sdop(𝑃) → 𝑺∧𝜋 is
carried to the toposic décollage 𝛴 ↦ 𝐷(𝛴). We have seen (Proposition 9.7.11) that this
is a fully faithful functor whose essential image is Déc𝑃(TopStone

∞ ).
In the other direction, let us consider the functor

𝛱predéc,𝑃,∧
∞ ∶ Déc𝑃(Topbc

∞) → Fun(sdop(𝑃), 𝑺∧𝜋)

given by composition with the profinite shape functor 𝛱∧∞, so that a toposic décollage
𝑫∶ sdop(𝑃) → Topbc

∞ is carried to the functor 𝛴 ↦ 𝛱∧∞𝑫(𝛴). We can then compose
this with the Segalification functor – that is, the left adjoint to the fully faithful functor
Déc𝑃(𝑺∧𝜋) ↪ Fun(sdop(𝑃), 𝑺∧𝜋) – to obtain a functor

𝛱déc,𝑃,∧
∞ ∶ Déc𝑃(Topbc

∞) → Déc𝑃(𝑺∧𝜋)

that is left adjoint to 𝜆̂déc𝑃 .

The difficulty here is that the functor 𝛱déc,𝑃,∧
∞ is very inexplicit, because it involves

Segalification. To address this, we have the following.

11.4.2Theorem. Let 𝑃 be a finite poset. If𝑿 → 𝑃 is a spectral 𝑃-stratified∞-topos, then
the functor𝛴 ↦ 𝛱∧∞𝑫(𝛴) is already a profinite spatial décollage; that is, the Segalification
morphism

𝛱predéc,𝑃,∧
∞ (𝑿) → 𝛱déc,𝑃,∧

∞ (𝑿)
is an equivalence in Fun(sdop(𝑃), 𝑺∧𝜋).
Proof. It suffices to prove that for every string 𝛴 ≔ {𝑝0 ≤ ⋯ ≤ 𝑝𝑛} ⊂ 𝑃, the natural
morphism

𝑓𝛴 ∶ 𝛱∧∞(𝑿𝑝0 ×⃖𝑿⋯ ×⃖𝑿 𝑿𝑝𝑛) = 𝛱
∧
∞Mor𝑃(𝛴̃, 𝑿) → Map𝑃(𝛴,𝛱∧(∞,1)(𝑿))

in 𝑺∧𝜋 an equivalence. By Whitehead’s Theorem for profinite spaces (Theorem 5.14.7=
[SAG,TheoremE.3.1.6]), it suffices to prove that thematerialisationmat(𝑓𝛴) is an equiv-
alence. Since𝑿 is spectral, we have a natural equivalence

mat𝛱∧∞(𝑿𝑝0 ×⃖𝑿⋯ ×⃖𝑿 𝑿𝑝𝑛) ≃ Pt(𝑿𝑝0 ×⃖𝑿⋯ ×⃖𝑿 𝑿𝑝𝑛) .
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Similarly, since 𝛴 is constant as a proöbject and 𝑿 is spectral, by Whitehead’s Theorem
for profinite stratified spaces (Theorem 11.3.3) we have natural equivalences

matMap𝑃(𝛴,𝛱∧(∞,1)(𝑿)) ≃ Map𝑃(𝛴,mat𝛱∧(∞,1)(𝑿))
≃ Map𝑃(𝛴,Pt(𝑿)) .

By the universal property of the iterated oriented fibre product 𝑿𝑝0 ×⃖𝑿 ⋯ ×⃖𝑿 𝑿𝑝𝑛 , we
have a natural identification

(11.4.3) Map𝑃(𝛴,Pt(𝑿)) ⥲ Pt(𝑿𝑝0 ×⃖𝑿⋯ ×⃖𝑿 𝑿𝑝𝑛) .

To complete the proof, note that the materialisation mat(𝑓𝛴) is equivalent to the mor-
phism (11.4.3).

11.4.4 Example. Let 𝑃 be a finite poset, and let 𝑿 → 𝑃 be a spectral 𝑃-stratified
∞-topos. It follows from Theorem 11.4.2 that, for any point 𝑝 ∈ 𝑃, the 𝑝-th stratum
𝛱𝑃,∧(∞,1)(𝑿)𝑝 is equivalent to the homotopy type𝛱∧∞(𝑿𝑝).

11.4.5 Example. Let 𝑃 be a finite poset, and let 𝑿 → 𝑃 be a spectral 𝑃-stratified∞-
topos. It follows from Theorem 11.4.2 that, for any points 𝑝, 𝑞 ∈ 𝑃 with 𝑝 < 𝑞, the link
Map𝑃({𝑝 ≤ 𝑞},𝛱

𝑃,∧
(∞,1)(𝑿)) between the 𝑝-th and 𝑞-th strata of 𝛱𝑃,∧(∞,1)(𝑿) is equivalent

to the homotopy type𝛱∧∞(𝑿𝑝 ×⃖𝑿 𝑿𝑞) of the link.

11.4.6 Example. Let 𝑃 be a finite poset, and𝑿 a spectral 𝑃-stratified∞-topos. For any
points 𝑝, 𝑞 ∈ 𝑃 with 𝑝 ≤ 𝑞, write

𝑖𝑝𝑞,∗ ∶ 𝑿𝑝 ↪ 𝑿{𝑝≤𝑞} and 𝑗𝑝𝑞,∗ ∶ 𝑿𝑞 ↪ 𝑿{𝑝≤𝑞}

for the closed and open immersions of strata, respectively. Then the Beck–Chevalley
Theorem (Theorem 8.1.4) ensures that the décollage

𝛱déc,𝑃,∧
∞ (𝑿)∶ sdop(𝑃) → 𝑺∧𝜋

carries any string {𝑝0 ≤ ⋯ ≤ 𝑝𝑛} ⊆ 𝑃 to the profinite space 𝑺∧𝜋 → 𝑺 given by the
composite

𝛤𝑿𝑝0 ,∗𝑖
∗
𝑝0𝑝1𝑗𝑝0𝑝1,∗𝑖

∗
𝑝1𝑝2𝑗𝑝1𝑝2,∗⋯𝑖

∗
𝑝𝑛−1𝑝𝑛𝑗𝑝𝑛−1𝑝𝑛,∗𝛤

∗
𝑿𝑝𝑛

.

11.5 Van Kampen theorem
If 𝑃 is a poset and 𝜂∶ 𝑃 → {0} then the ‘invert everything’ functor𝛱 ↦ 𝛱+ ≃ 𝜂!𝛱 from
𝑃-stratified spaces to spaces, regarded as a functor from spatial décollages to spaces, is
given by the formation of the colimit. That is, if𝛱 → 𝑃 is a 𝑃-stratified space, then one
has

𝛱+ ≃ colim
𝛴∈sdop(𝑃)
𝑁𝑃(𝛱)(𝛴) .

The ‘invert everything’ functor extends to a functor𝜫 ↦ 𝜫+ from profinite 𝑃-stratified
spaces to profinite spaces, and this formula is precisely the same in that context. The
compatibility (11.1.5) therefore provides a colimit description of the homotopy type of
a stratified∞-topos:
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11.5.1 Proposition (van Kampen Theorem). Let 𝑃 be a finite poset, and let𝑿 → 𝑃 be a
spectral 𝑃-stratified∞-topos. Then the homotopy type of𝑿 is equivalent to the colimit

𝛱∧∞(𝑿) ≃ colim
𝛴∈sdop(𝑃)
𝛱∧∞(𝑵𝑃(𝑿)(𝛴))

in profinite spaces.

11.5.2 Example. If𝑿 is a spectral∞-topos exhibited as a recollement 𝒁 ∪⃖𝜙 𝑼 of Stone
∞-topoi 𝒁 and 𝑼, then one has the formula

𝛱∧∞(𝑿) ≃ 𝛱∧∞(𝒁) ∪𝛱
∧
∞(𝒁×⃖𝑿𝑼) 𝛱∧∞(𝑼)

in profinite spaces.

11.5.3 Example. Let 𝑛 ∈ 𝑵, and let𝑿 → [̃𝑛] be a spectral [𝑛]-stratified∞-topos. Then
𝛱∧∞(𝑿) can be exhibited as the colimit of a punctured (𝑛+1)-cube sdop([𝑛]) → 𝑺∧𝜋 given
by

{𝑝0,… , 𝑝𝑘} ↦ 𝛱∧∞(𝑿𝑝0 ×⃖𝑿 𝑿𝑝1 ×⃖𝑿⋯ ×⃖𝑿 𝑿𝑝𝑘) .
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Part IV

Stratified étale homotopy theory
In this part we use the profinite stratified shape of §11 to give a refinement of the étale
homotopy theory of Artin–Mazur–Friedlander.We first recall how to define the étale ho-
motopy type from the∞-categorical perspective, as well as the main theorems in étale
homotopy theory (§12).We then study the profinite stratified shape of the étale∞-topos
of coherent schemes in detail (§13). In particular, we provide a concrete description in
terms the profinite Galois categories introduced in the Introduction (preceding Theo-
rem A). We conclude with §14 where we discuss Grothendieck’s anabelian conjectures
and use a theorem of Voevodsky to prove a strong reconstruction theorem for schemes
in characteristic 0 in terms of profinite Galois categories (Theorem A=Theorem 14.4.7).

12 Aide-mémoire on étale homotopy types
In this section we recall how to situate the étale homotopy type of Artin–Mazur–Fried-
lander in the∞-categorical setting, as well as provide some example computations of
the étale homotopy type.

12.1 Artin & Mazur’s étale homotopy types of schemes
From an∞-categorical perspective, there are a priori four étale shapes to contemplate:

12.1.1 Definition. Let𝑋 be a scheme𝑋. We define:

→ the shape𝛱ét
∞(𝑋) ≔ 𝛱∞(𝑋ét) of the 1-localic étale∞-topos,

→ the shape𝛱ét,hyp
∞ (𝑋) ≔ 𝛱∞(𝑋

hyp
ét ) of the hypercomplete étale∞-topos,

→ the profinite shape𝛱ét,∧
∞ (𝑋) ≔ 𝛱∧∞(𝑋ét) of the 1-localic∞-topos, and

→ the profinite shape𝛱ét,hyp,∧
∞ (𝑋) ≔ 𝛱∧∞(𝑋

hyp
ét ) of the hypercomplete étale∞-topos.

12.1.2. As a special case of Example 5.13.9, we see that the natural morphism

𝛱ét,hyp
∞ (𝑋) → 𝛱ét

∞(𝑋)

becomes an equivalence after protruncation. In particular, we obtain an equivalence
𝛱ét,hyp,∧
∞ (𝑋) ⥲ 𝛱ét,∧

∞ (𝑋). We simply write

𝛱ét
<∞(𝑋) ≔ 𝛱

ét,hyp
∞ (𝑋) ≃ 𝛱ét

∞(𝑋)

for the protruncated shape of the étale∞-topos.

For a locally noetherian scheme𝑋, Artin and Mazur [4, §9] constructed a proöbject
in the homotopy category of spaces called the étale homotopy type of𝑋. Friedlander [25,
§4] later refined this construction, producing a proöbject in simplicial sets called the
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étale topological type of𝑋 whose image in Pro(ℎ𝑺) agrees with the étale homotopy type
of Artin–Mazur [25, Proposition 4.5]. Hoyois [40, §5] has shown that Friedlander’s étale
topological type corepresents the shape of the hypercomplete étale∞-topos of𝑋:

12.1.3 Theorem ([40, Corollary 5.6]). Let 𝑋 be a locally noetherian scheme. Then the
étale topological type of𝑋, as defined by Friedlander, corepresents the shape𝛱ét,hyp

∞ (𝑋) of
the hypercomplete étale∞-topos.

12.1.4. We refer to the shape 𝛱ét
∞(𝑋) of the étale∞-topos as the étale shape, call the

protruncated shape 𝛱ét
<∞(𝑋) the protruncated étale shape, and call the profinite shape

𝛱ét,∧
∞ (𝑋) the profinite étale shape.

In certain cases, the protruncated étale shape is already profinite.

12.1.5Theorem ([DAGXIII,Theorem 3.6.5; 4,Theorem 11.1; 25,Theorem 7.3]). Let𝑋
be a connected noetherian scheme that is geometrically unibranch. Then the protruncated
étale shape is profinite, that is, the natural morphism

𝛱ét
<∞(𝑋) → 𝛱ét,∧

∞ (𝑋)

is an equivalence.

12.1.6 Question. Let 𝑋 be a connected noetherian scheme that is geometrically uni-
branch. Even in simple cases, we do not at this point have a very good understanding
of the kind of information that is contained in the étale shape 𝛱ét

∞(𝑋) but not in the
other invariants. In this paper, we are content to focus our attention on the profinite
homotopy types (and their stratified variants, of course).

12.1.7. Let 𝑋 be a scheme and 𝑥 → 𝑋 a geometric point of 𝑋. Then 𝑥 induces a point
of the prospace𝛱ét

∞(𝑋), and we can contemplate the homotopy progroups

𝜋ét𝑛 (𝑋, 𝑥) ≔ 𝜋𝑛(𝛱ét
∞(𝑋), 𝑥) .

The groups 𝜋ét𝑛 (𝑋, 𝑥) are what we call the extended étale homotopy groups of 𝑋. In par-
ticular, the progroup 𝜋ét1 (𝑋, 𝑥) is the groupe fondamentale élargi of [SGA 3ii, Exposé
X, §6]; see [4, Corollary 10.7]. The usual étale fundamenal group of [SGA 1, Exposé
V, §7] is the profinite completion of 𝜋ét1 (𝑋, 𝑥), which coincides with the fundamental
progroup 𝜋1(𝛱ét,∧

∞ (𝑋), 𝑥) of the profinite étale shape. We denote the usual étale funda-
mental group by 𝜋̂ét1 (𝑋, 𝑥).

12.2 Examples
In this subsectionwe provide some example computations of étale shapes and homotopy
types.

12.2.1 Example. For any field 𝑘 one has a noncanonical identification

𝛱ét,∧
∞ (Spec 𝑘) ≃ 𝐵𝐺𝑘 ,

where 𝐺𝑘 is the absolute Galois group of 𝑘.
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12.2.2 Example. Since Spec𝒁 has no unramified étale covers, the étale fundamental
group of the Spec𝒁 is trivial. Moreover, for all integers 𝑖 ≥ 1 and 𝑛 ≥ 2, the étale
cohomology group H𝑖ét(Spec𝒁;𝒁/𝑛) is trivial (see [59; 75]). The Universal Coefficient
Theorem and Hurewicz Theorem imply that the profinite étale shape 𝛱ét,∧

∞ (Spec𝒁) of
Spec𝒁 is trivial (cf. [4, §4]). Since 𝒁 is a noetherian domain, Theorem 12.1.5 applies,
hence the protruncated étale shape𝛱ét

<∞(Spec𝒁) of Spec𝒁 is trivial.

12.2.3 Example. Let 𝑘 be an algebraically closed field of characteristic 0 and

𝐶 = Spec(𝑘[𝑥, 𝑦]/(𝑦2 − 𝑥3 − 𝑥2))

the nodal cubic. Then one has a noncanoical identification𝛱ét
<∞(𝐶) ≃ 𝐵𝒁, whereas the

profinite étale shape is given by𝛱ét,∧
∞ (𝐶) ≃ 𝐵𝒁.

12.2.4 Example. If 𝐶 is a smooth irreducible curve over a field 𝑘 with Euler character-
istic 𝜒(𝐶) < 2, then we have a noncanonical identification𝛱ét,∧

∞ (𝐶) ≃ 𝐵𝜋ét1 (𝐶).

12.2.5Example (seeTheorem12.5.3). Wehave an equivalence𝛱ét,∧
∞ (𝑷1𝑪) ≃ (𝑆2)∧𝜋, where

𝑆2 denotes the 2-sphere.

12.2.6 Example ([38, Theorem 1]). Let 𝑘 be an algebraically closed field of positive
characteristic and let 𝑋 be a smooth 𝑘-variety. Then 𝛱ét

<∞(𝑋) ≃ ∗ if and only if 𝑋 is
isomorphic to Spec 𝑘.

12.2.7 Example (Example 8.6.4). Let 𝑘 be a separably closed field, and let 𝑋 and 𝑌 be
coherent 𝑘-schemes. If 𝑌 is proper, then the natural morphism of profinite spaces

𝛱ét,∧
∞ (𝑋 ×Spec 𝑘 𝑌) → 𝛱ét,∧

∞ (𝑋) × 𝛱ét,∧
∞ (𝑌)

is an equivalence.

12.3 Monodromy
Specalising Proposition 5.14.17 to the case of the étale∞-topos of a scheme shows that
lisse étale sheaves are the same as representations of the profinite étale shape:

12.3.1 Proposition. Let𝑋 be a scheme the unit𝑋ét → 𝑋Stone
ét restricts to an equivalence

Fun(𝛱ét,∧
∞ (𝑋), 𝑺𝜋) ≃ 𝑋lisse

ét .

This generalises the classical fact that the profinite étale fundamental groupoid

𝛱ét,∧
1 (𝑋) ≃ 𝜏≤1𝛱ét,∧

∞ (𝑋)

classifies lisse étale sheaves of sets (see Example 5.14.18).

136



12.4 Friedlander’s étale homotopy of simplicial schemes
Attached to a simplicial scheme 𝑌∗ is the étale topological type of 𝑌∗ as constructed by
Eric Friedlander [25, §4] and refined byDavidCox [21],Daniel Isaksen [47], IlanBarnea
and Tomer Schlank [8], David Carchedi [14], and Chang-YeonChough [15; 16].Thanks
to work of Cox [21, Theorem III.8], Isaksen [47, §3, Theorem 11], and Chough [16,
Proposition 3.2.13], the étale topological type of 𝑌∗ can be defined as the colimit in
prospaces of the simplicial object that carries 𝑚 ∈ 𝜟 to the étale shape of 𝑌𝑚 (or its
hypercompletion). Again, from an ∞-categorical perspective, there are variations on
this notion:

12.4.1 Definition. Let 𝑌∗ be a simplicial scheme. We define:

→ The étale shape
𝛱ét
∞(𝑌∗) ≔ colim

𝑚∈𝜟op
𝛱ét
∞(𝑌𝑚)

to be the geometric realisation of the simplicial prospace𝑚 ↦ 𝛱ét
∞(𝑌𝑚).

→ Friedlander’s étale topological type

𝛱ét,hyp
∞ (𝑌∗) ≔ colim

𝑚∈𝜟op
𝛱ét,hyp
∞ (𝑌𝑚)

to be the geometric realisation of the simplicial prospace𝑚 ↦ 𝛱ét,hyp
∞ (𝑌𝑚).

12.4.2. Since protuncation is a left adjoint, from (12.1.2) we deduce that the natural
morphism of prospaces

𝛱ét,hyp
∞ (𝑌∗) → 𝛱ét

∞(𝑌∗)
becomes an equivalence after protruncation, and hence after profinite completion as
well.

12.4.3. We can extend the functor that assigns a scheme its étale∞-topos to simplicial
schemes by left Kan extension, so that the étale∞-topos of a simplicial scheme 𝑌∗ is
given by the geometric realisation

𝑌∗,ét ≔ colim
𝑚∈𝜟op
𝑌𝑚,ét

in Top∞. Since the shape is a left adjoint, we see that the shape of the ∞-topos 𝑌∗,ét
coincides with the étale shape 𝛱ét

∞(𝑌∗). Likewise, Friedlander’s étale topological type
coincides with the shape of the hypercomplete∞-topos given by the geometric realisa-
tion of the simplicial hypercomplete∞-topos𝑚 ↦ 𝑌hyp𝑚,ét.

12.5 Riemann ExistenceTheorem
In this subsection we recall the Artin–Mazur–Friedlander Riemann Existence Theorem
(Theorem 12.5.3), which states that the profinite étale shape of a scheme of finite type
over the complex numbers agrees with the homotopy type of its underlying analytic
space, up to profinite completion.
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12.5.1 Notation. Write 𝑪 for the field of complex numbers and Schft
/𝑪 for category of

schemes of finite type over 𝑪 and finite type morphisms between them. We write

(−)an ∶ Schft
/𝑪 → TSpc

for the analytification functor, which carries a scheme 𝑋 of finite type over 𝑪 to 𝑋(𝑪)
equipped with the complex analytic topology.

12.5.2 Recollection. Let𝑋 be a scheme finite type over𝑪. In [SGA 4iii, Exposé XI, 4.0],
Artin defines a natural geometric morphism of 1-topoi 𝜀∗ ∶ 𝜏≤0𝑋an → 𝜏≤0𝑋ét from the
1-topos of sheaves of sets on 𝑋an to the 1-topos of sheaves of sets on the étale site of
𝑋. The geometric morphism 𝜀∗ extends to a natural geometric morphism of 1-localic
∞-topoi

𝜀∗ ∶ 𝑋an → 𝑋ét .
The naturality can be encoded as a functor Schft

/𝑪 → Fun(𝛥1,Top∞), so that if 𝑓∶ 𝑋 →
𝑌 is a finite typemorphismof finite type𝑪-schemes, then one has an equivalence𝑓ét∗ 𝜀∗ ≃
𝜀∗𝑓an∗ .

In light ofTheorem 12.1.3, the Riemann ExistenceTheorem proved byArtin–Mazur
[4, Theorem 12.9] and later Friedlander [25, Theorem 8.6] asserts that𝑋an and𝑋ét have
the same profinite shape, when regarded as proöbjects of the homotopy category of
spaces. One may refine the Artin–Mazur–Friedlander equivalence to an equivalence
in the ∞-category of profinite spaces (cf. [14, Proposition 4.12; 16, §4]). Indeed, the
Théorème de Comparaison [SGA 4iii, Exposé XI,Théorèmes 4.3 & 4.4] can be employed
to provide an equivalence between the∞-category of lisse étale sheaves of spaces on𝑋
and that of lisse sheaves of spaces on𝑋an, whence we obtain the following.

12.5.3 Theorem (Riemann Existence). Let 𝑋 be a scheme finite type over 𝑪. Then 𝜀∗
induces an equivalence 𝑋lisse

ét ⥲ (𝑋an)lisse of∞-categories of lisse sheaves. Consequently,
𝜀∗ induces an equivalence of profinite spaces

(𝑋an)∧𝜋 ≃ 𝛱∧∞(𝑋an) ⥲ 𝛱∧∞(𝑋ét) .

12.6 Van KampenTheorem for étale shapes
In this subsectionwe prove a vanKampenTheorem from étale shapes (Corollary 12.6.6).
We deduce this from the fact that the functor that sends a scheme to its étale∞-topos
satisfies Nisnevich excision (Proposition 12.6.3).

12.6.1 Definition. We call a pullback square of schemes

(12.6.2)
𝑈′ 𝑋′

𝑈 𝑋

⌟
𝑝

𝑗

an elementary Nisnevich square if 𝑗 is an open immersion, 𝑝 is étale, and 𝑝 induces an
isomorphism 𝑝−1(𝑋 ∖ 𝑈) → 𝑋 ∖ 𝑈, where the closed complement𝑋 ∖ 𝑈 of 𝑈 is given
the reduced structure.
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David Rydh’s general descent theorem [74, Theorem A] implies that the formation
of the étale 1-topos sends elementary Nisnevich squares to pushout squares of 1-topoi.
The same is true for étale∞-topoi, though this is not implied by Rydh’s result because
1-localic∞-topoi are not closed under colimits in Top∞. As in Rydh’s theorem, this can
be deduced from étale descent (combined with Morel and Voevodsky’s theorem charac-
terizing Nisnevich sheaves as presheaves satisfying Nisnevich excision [SAG, Theorem
3.7.5.1; 64, §3, Proposition 1.16]), but the following proposition provides an elementary
proof.

12.6.3 Proposition. Given an elementary Nisnevich square of schemes (12.6.2), the in-
duced square of étale∞-topoi

(12.6.4)
𝑈′ét 𝑋′ét

𝑈ét 𝑋ét

𝑝∗

𝑗∗

is a pushout square and pullback square in Top∞. The same is true after passing to hyper-
complete étale∞-topoi.

Proof. The fact that the (12.6.4) is a pullback is immediate from the fact that 𝑗 is an open
immersion; the same is true for hypercomplete étale∞-topoi since hypercompletion is
a right adjoint.

Let よ ∶ 𝑋ét ↪ 𝑋ét denote the Yoneda embedding of étale site of 𝑋 to the étale∞-
topos. Note that if 𝑌 ∈ 𝑋ét is a scheme étale over 𝑋, then the natural geometric mor-
phism 𝑌ét → (𝑋ét)/ょ(𝑌) is equivalence. Since colimits in an∞-topos are van Kampen27

andよ(𝑋) is the terminal object of𝑋ét, it thus suffices to prove that the pullback square

(12.6.5)
よ(𝑈′) よ(𝑋′)

よ(𝑈) よ(𝑋)

⌟

in 𝑋ét is also a pushout (whence the same is true in 𝑋hyp
ét since truncated objects are

hypercomplete). The fact that (12.6.5) is a pullback square is immediate from [SAG,
Proposition 2.5.2.1(3)], the hypotheses of which are valid because (12.6.2) is an elemen-
tary Nisnevich square.

Proposition 12.6.3 immediately implies the classicial ‘excision’ theorem in étale co-
homology [60, Chapter III, Proposition 1.27]. Since the shape is a left adjoint, the follow-
ing van Kampen Theorem for the étale shape is immediate, providing a generalisation
of a theorem of Isaksen [47, §2, Theorem 8].

27A colimit in an∞-category𝐶with pullbacks is van Kampen if the functor𝐶op → Cat∞ given by 𝑐↦ 𝐶/𝑐
transforms it into a limit in Cat∞. A presentable∞-category 𝐶 is an∞-topos if and only if colimits in 𝐶 are
van Kampen; see [HTT, Proposition 5.5.3.13, Theorem 6.1.3.9(3), & Proposition 6.3.2.3; 42].
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12.6.6 Corollary. Given an elementary Nisnevich square of schemes (12.6.2), the induced
squares

𝛱ét
∞(𝑈′) 𝛱ét

∞(𝑋′)

𝛱ét
∞(𝑈) 𝛱ét

∞(𝑋)

and
𝛱ét,hyp
∞ (𝑈′) 𝛱ét,hyp

∞ (𝑋′)

𝛱ét,hyp
∞ (𝑈) 𝛱ét,hyp

∞ (𝑋)

are pushout squares in Pro(𝑺).

12.6.7. Since protruncation and profinite completion are left adjoints, Corollary 12.6.6
show that the protruncated andprofinite étale shapes send elementaryNisnevich squares
to pushout squares in Pro(𝑺<∞) and 𝑺∧𝜋, respectively. In particular, Proposition 12.6.3
(and [SAG, Proposition 2.5.2.1]) immediately imply Misamore’s ‘étale van Kampen The-
orem’ [61, Corollaries 6.5 & 6.6] in the case of schemes. See also [13; 81, §5; 87].

13 Galois categories
In this section we use the profinite shape to define a stratified refinement of the étale
homotopy type and provide a number of example computations of this stratified étale
homotopy type.

13.1 Galois categories of schemes
13.1.1Notation. Recall that for a coherent scheme𝑋, we letFC(𝑋)denote the 1-category
of nondegenerate, finite, constructible stratifications of the spectral topological space
𝑋zar. We abuse notation and write merely 𝑃 for an object 𝑋zar → 𝑃 of this category,
leaving the structure morphism implicit. The 1-category FC(𝑋) is, up to equivalence, a
poset in which𝑃 ≤ 𝑄 if and only if𝑃 refines𝑄; that is,𝑃 ≤ 𝑄 if and only if𝑋zar → 𝑄 fac-
tors through𝑋zar → 𝑃.The spectral topological space𝑋zar corresponds underHochster
Duality to the profinite poset {𝑃}𝑃∈FC(𝑋).

We write 𝛷𝑋 for the set of filters on FC(𝑋) – i.e., open subsets that are inverse as
1-categories – equipped with the partial ordering given by inclusion. One has a natural
injection FC(𝑋)op ↪ 𝛷𝑋 that carries 𝑃 to the principal filter 𝐹𝑋,≥𝑃.

13.1.2 Notation. We write Sch for the 1-category of coherent schemes (0.6.1).

13.1.3 Definition. Let𝑋 be a coherent scheme. Then we write

Gal(𝑋) ≔ 𝛱𝑋zar,∧
(∞,1) (𝑋ét) .

We call this the Galois category of𝑋. This is a functor Gal ∶ Sch→ Str∧𝜋.
More generally, if 𝐹 ∈ 𝛷𝑋 is a filter, then 𝐹 is an inverse system of finite posets, and

we have a constructible stratification 𝑝∶ 𝑋zar → 𝐹. We may therefore define

Gal(𝑋/𝐹) ≔ 𝛱𝐹,∧(∞,1)(𝑋ét) .
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13.1.4. We obtain a diagram

Gal(𝑋/−)∶ 𝛷op𝑋 → Str∧𝜋
of localisations.

In particular, for any nondegenerate, finite, constructible stratification 𝑃 ∈ FC(𝑋),
we define

Gal(𝑋/𝑃) ≔ Gal(𝑋/𝐹𝑋,≥𝑃) ≃ 𝛱𝑃,∧(∞,1)(𝑋ét) .

13.2 Examples
We now provide some example computations of profinite Galois categories.

13.2.1 Example. If 𝑋 is any (coherent) scheme, we may consider 𝑋 with its trivial {0}-
stratification. In this case, one recovers the usual profinite étale shape: one has a canon-
ical equivalence

Gal(𝑋/{0}) ≃ 𝛱ét,∧
∞ (𝑋) .

13.2.2 Example. Let 𝑆 = Spec𝐴 be the spectrum of a discrete valuation ring 𝐴, with
closed point 𝑠 and generic point 𝜂. Then 𝑆zar ≅ [1], so 𝑆ét is a spectral∞-topos that is
naturally [1]-stratified, with closed stratum 𝑠ét and open stratum 𝜂ét.

Write 𝑆h and 𝑆sh for the spectra of the henselisation 𝐴h and the strict henselisation
𝐴sh of 𝐴, and write 𝜂h and 𝜂sh for the spectra of the fraction field 𝐾h of 𝐴h and the
fraction field𝐾sh of 𝐴sh.

In this case, please observe that the evanescent∞-topos 𝑠ét ×⃖𝑆ét 𝑆ét can be identified
with the étale∞-topos 𝑆hét (Example 7.7.4), and the oriented fibre product 𝑠ét ×⃖𝑆ét 𝜂ét can
be identified with the étale∞-topos 𝜂hét.

Now we have the following (noncanonical) identifications of profinite spaces:

𝛱∧∞(𝜂) ≃ 𝐵𝐺𝐾 , 𝛱∧∞(𝜂h) ≃ 𝐵𝐷𝐴 , 𝛱∧∞(𝜂sh) ≃ 𝐵𝐼𝐴 , and 𝛱∧∞(𝑆h) ≃ 𝐵𝐺𝑘 ,

where 𝐺𝐾 and 𝐺𝑘 are the absolute Galois groups of 𝐾 and 𝑘, the subgroup 𝐷𝐴 ⊆ 𝐺𝐾 is
the decomposition group, and 𝐼𝐴 ⊆ 𝐷𝐴 is the inertia group.

We thus identify, noncanonically, the corresponding profinite décollage𝑁[1](Gal(𝑆))
over [1] as the functor sdop([1]) → 𝑺∧𝜋 given by the diagram

𝐵𝐺𝑘 ← 𝐵𝐷𝐴 → 𝐵𝐺𝐾 .

13.2.3 Example (Knots and primes). If 𝐴 is a number ring with fraction field 𝐾, then
Gal(Spec𝐴) is a category with (isomorphism classes of) objects the prime ideals of 𝐴.
For each nonzero prime ideal p ∈ Spec𝐴, the automorphisms of p can be identified with
the absolute Galois group 𝐺𝜅(p) of the finite field 𝜅(p). Thus the profinite étale shape of
Spec𝐴 is stratified by the various closed strata, each of which is an embedded circle –
i.e., a knot 𝐵𝐺𝜅(p). The open complement of each 𝐵𝐺𝜅(p) is a 𝐵𝐺p, where

𝐺p ≔ 𝜋ét1 (Spec(𝐴) ∖ p)

is the automorphism group of themaximal Galois extension of𝐾 that is ramified atmost
only at p and the infinite primes. Enveloping each knot is a tubular neighbourhood, given
by Gal(Spec𝐴shp ), so that the deleted tubular neighbourhood of 𝐵𝐺𝜅(p) is a 𝐵𝐺𝐾p .
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13.3 Sieves & cosieves of Galois categories
One can read off various facts about schemes from their Galois categories. In this subsec-
tion and the next, we begin to propose a dictionary between schemes and their profinite
Galois categories.28 We continue this endevour in § 14, as the dictionary is strongest
between profinite Galois categories and perfectly reduced schemes (Definition 14.2.2).

The following is immediate.

13.3.1 Proposition. A monomorphism 𝑈 ↪ 𝑋 of schemes is an open immersion if and
only if the induced functor Gal(𝑈) → Gal(𝑋) is equivalent to the inclusion of a cosieve.

Dually, a monomorphism 𝑍 ↪ 𝑋 of schemes is a closed immersion if and only if
Gal(𝑍) → Gal(𝑋) is equivalent to the inclusion of a sieve.

An interval in an∞-category 𝐶 is a full subcategory 𝐷 ⊆ 𝐶 such that a morphism
𝑑 → 𝑑′ of𝐷 factors through an object 𝑐 of 𝐶 only if 𝑐 lies in𝐷.

13.3.2 Corollary. A monomorphism𝑊 ↪ 𝑋 of schemes is a locally closed immersion
if and only if the induced functor Gal(𝑊) → Gal(𝑋) is equivalent to the inclusion of an
interval.

13.3.3 Corollary. A scheme 𝑋 is local if and only if Gal(𝑋) contains a weakly initial
object – i.e., an object from which every object receives a morphism. Dually, a scheme 𝑋
is irreducible if and only if Gal(𝑋) contains a weakly terminal object – i.e., an object to
which every object sends a morphism.

13.3.4. For any scheme 𝑋 and any point 𝑥0 ∈ 𝑋zar, the Galois category of the localisa-
tion is the fibre product

Gal(𝑋(𝑥0)) ≃ Gal(𝑋) ×𝑋zar 𝑋zar
𝑥/ .

Dually, for any point 𝑦0 ∈ 𝑋zar, the Galois category of the closure 𝑋(𝑦0) of 𝑦0 (with the
reduced subscheme structure, say) is the fibre product

Gal(𝑋(𝑦0)) ≃ Gal(𝑋) ×𝑋zar 𝑋zar
/𝑦 .

13.4 Undercategories & overcategories of Galois categories
In this subsectionwe extend our dictionary by showing that undercategories correspond
to localisations, while overcategories correspond to normalisations (Corollary 13.4.4).

13.4.1 Notation. If 𝑥 → 𝑋 is a point of a scheme𝑋, then we write𝑂ℎ𝑋,𝑥0 for the henseli-
sation of the local ring 𝑂𝑋,𝑥0 , and we write 𝑂ℎ𝑋,𝑥 ⊇ 𝑂ℎ𝑋,𝑥0 for the unique extension of
henselian local rings that on residue fields reduces to the field extension 𝜅 ⊇ 𝜅(𝑥0),
where 𝜅 is the separable closure of 𝜅(𝑥0) in 𝜅(𝑥). We will also write

𝑋(𝑥) ≔ Spec(𝑂ℎ𝑋,𝑥) .

We call 𝑋(𝑥) the localisation of 𝑋 at 𝑥 (Example 7.7.4). The scheme 𝑋(𝑥) is the limit of
the factorisations 𝑥 → 𝑈 → 𝑋 in which 𝑈 → 𝑋 is étale.

28This dictionary first appeared in a preprint of the first-named author [9].
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If 𝑥 → 𝑋 is a geometric point, then𝑂ℎ𝑋,𝑥 is the strict henselisation of𝑂𝑋,𝑥0 , and𝑋(𝑥)
is the strict localisation of𝑋 at 𝑥.

Dually, if 𝑦 → 𝑋 is a point, then we write𝑋(𝑦0) for the reduced subscheme structure
on the Zariski closure of 𝑦0, and we write 𝑋(𝑦) for the normalisation of 𝑋(𝑦0) under
Spec 𝜅, where 𝜅 is the separable closure of 𝜅(𝑦0) in 𝜅(𝑦). We call𝑋(𝑦) the normalisation
of𝑋 at 𝑦.

If 𝑦 → 𝑋 is a geometric point, then we call𝑋(𝑦) the strict normalisation of𝑋 at 𝑦. It
is the limit of the factorisations 𝑦 → 𝑍 → 𝑋 in which 𝑍 → 𝑋 is finite.

13.4.2. Stefan Schröer [79] has brought us totally separably closed schemes, which are
integral normal schemes whose function field is separably closed. In other words, a to-
tally separably closed scheme is one of the form 𝑋(𝑦) for some geometric point 𝑦 → 𝑋.
(In the language of Schröer, 𝑋(𝑦) is the total separable closure of the Zariski closure of
𝑦0 – with the reduced subscheme structure – under 𝑦.) Schröer has shown that this class
of schemes has a number of curious properties:

→ If 𝑍 is totally separably closed, then for any point 𝑧0 ∈ 𝑍zar, the local ring𝑂𝑍,𝑧0 is
strictly henselian [79, Proposition 2.6].

→ If 𝑍 is totally separably closed, then the étale topos and the Zariski topos of 𝑍
coincide, so that Gal(𝑍) ≃ 𝑍zar [79, Corollary 2.5]. In other words, Gal(𝑍) is a
profinite poset with a terminal object.

→ If 𝑍 is totally separably closed and𝑊 is irreducible, then any integral morphism
𝑊 → 𝑍 is radicial [79, Lemma 2.3]. Thus any integral surjection 𝑊 → 𝑍 is a
universal homeomorphism.

→ If𝑍 is totally separably closed, then the posetGal(𝑍) ≃ 𝑍zar has all finite nonempty
joins [80, Theorem 2.1].

Here now is the basic observation, which follows more or less immediately from the
limit descriptions of the strict localisation and the strict normalisation:

13.4.3 Proposition. Let 𝑋 be a scheme, and let 𝑥 → 𝑋 and 𝑦 → 𝑋 be two geometric
points thereof. The following profinite sets are in (canonical) bijection:

→ the set MapGal(𝑋)(𝑥, 𝑦) of morphisms 𝑥 → 𝑦 in Gal(𝑋);

→ the set Mor𝑋(𝑦, 𝑋(𝑥)) of lifts of 𝑦 to the strict localisation𝑋(𝑥);

→ the set Mor𝑋(𝑥, 𝑋(𝑦)) of lifts of 𝑦 to the strict normalisation𝑋(𝑦).

We may thus describe the over- and undercategories of Galois categories:

13.4.4 Corollary. Let𝑋 be a scheme, and let 𝑥 → 𝑋 and 𝑦 → 𝑋 be two geometric points
thereof. Then we have

Gal(𝑋)𝑥/ ≃ Gal(𝑋(𝑥)) and Gal(𝑋)/𝑦 ≃ Gal(𝑋(𝑦)) .

The first sentence is originally due to Grothendieck [SGA 4ii, Exposé VIII, Corollaire
7.6].
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13.4.5 Corollary. Let 𝑋 be a scheme. Then Gal(𝑋) is equivalent to both of the following
full subcategories of𝑋-schemes:

→ the full subcategory spanned by the strict localisations of𝑋, and

→ the full subcategory spanned by the strict normalisations of𝑋.

Since Gal(𝑋(𝑦)) ≃ 𝑋(𝑦),zar, it follows that Galois categories are of a very particular sort:

13.4.6 Corollary. Let 𝑋 be a scheme. For any geometric point 𝑦 → 𝑋, the overcategory
Gal(𝑋)/𝑦 is a profinite poset with all finite nonempty joins. In particular, every morphism
of Gal(𝑋) is a monomorphism.

13.4.7 Definition. Let𝑋 be a scheme. Then a witness is a totally separably closed valua-
tion ring𝑉 and amorphism 𝛾∶ Spec𝑉 → 𝑋. If 𝑝0 is the initial object of Gal(𝑉) and 𝑝∞
is the terminal object of Gal(𝑉), then we say that 𝛾 witnesses the map 𝛾(𝑝0) → 𝛾(𝑝∞)
of Gal(𝑋).

13.4.8. Any morphism 𝑥 → 𝑦 of Gal(𝑋) has a witness: you can always find a local
morphism Spec𝑉 → (𝑋(𝑦))(𝑥) that induces an isomorphism of function fields.

13.5 Recovering the protruncated étale shape
Since Gal(𝑋) is the profinite stratified shape of a coherent topos, the fact that the profi-
nite stratified shape is a delocalisation of the protruncated shape (Theorem 11.2.3) im-
mediately implies the following:

13.5.1 Theorem. Let 𝑋 be a coherent scheme. Then there is a natural natural map of
prospaces

𝜃𝑋 ∶ 𝛱ét
∞(𝑋) → 𝐻(Gal(𝑋)) .

Moreover, 𝜃𝑋 induces an equivalence on protruncations. As a consequence:

→ For each integer 𝑛 ≥ 1 and geometric point𝑥 → 𝑋, we have canonical isomorphisms
of progroups

𝜋ét𝑛 (𝑋, 𝑥) ⥲ 𝜋𝑛(𝐻(Gal(𝑋)), 𝑥) ,
where𝜋ét𝑛 (𝑋, 𝑥) is the 𝑛th homotopy progroup of the étale shape𝛱ét

∞(𝑋) of𝑋 (12.1.7).

→ For any ring 𝑅, there is an equivalence of∞-categories between local systems of 𝑅-
modules on 𝑋 that are uniformly bounded both below and above and continuous
functors Gal(𝑋) → 𝐷𝑏(𝑅) that carry every morphism to an equivalence.

13.6 Fibred Galois categories
In this subsection we extend our notion of Galois categories to simplicial schemes.29

29The material from this subsection first appeared in a preprint of the first- and third-named authors [10].
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13.6.1 Definition. Let 𝑆 be an∞-category. A bounded coherent topos fibration 𝑿 → 𝑆
is a topos fibration in which each fibre 𝑿𝑠 is bounded coherent, and for any morphism
𝑓∶ 𝑡 → 𝑠 of 𝑆, the induced geometric morphism 𝑓∗ ∶ 𝑿𝑠 → 𝑿𝑡 is coherent. A spectral
topos fibration 𝑿 → 𝑆 is a bounded coherent topos fibration in which each fibre 𝑿𝑠 is a
spectral topos (for the canonical profinite stratification of §9.6).

13.6.2. Theusual straightening/unstraightening equivalence restricts to an equivalence
between the∞-category of bounded coherent (respectively, spectral) topos fibrations
𝑿 → 𝑆 and the∞-category of functors from 𝑆op to the∞-category of bounded coherent
(resp., spectral) topoi (cf. [HTT, Proposition 6.3.1.7]).

For a bounded coherent topos fibration 𝑿 → 𝑆 we write 𝑿coh
<∞ ⊆ 𝑿 for the full

subcategory spanned by the objects that are truncated and coherent in their fibre. Then
𝑿coh
<∞ → 𝑆 is a cocartesian fibration that is classified by a functor from 𝑆 to the category

of bounded∞-pretopoi [SAG, Definition A.7.4.1 & Theorem A.7.5.3].

13.6.3 Example. If𝑋∗ is a simplicial coherent scheme, then the fibred topos𝑋∗,ét → 𝜟
is a spectral topos fibration.

A fibred form of ∞-Categorical Hochster Duality is what allows us to construct
fibredGalois categories. To define it, we need tomake sense categories fibred in profinite
stratified spaces.

13.6.4 Definition. Let 𝑆 be an∞-category. A functor 𝑓∶ 𝛱 → 𝑆 will be said to be an
∞-category over 𝑆 fibred in layered∞-categories if 𝑓 is a catesian fibration whose fibres
are layered∞-categories. We write Laycart

/𝑆 for the∞-category of∞-categories over 𝑆
fibred in layered∞-categories.

13.6.5 Construction. There is a monad 𝑇 on the∞-category Lay of small layered∞-
categories given by sending a layered category 𝛱 to the limit over the 𝜋-finite layered
∞-categories to which it maps.30 The∞-category of 𝑇-algebras is equivalent to the∞-
category of profinite layered ∞-categories. If 𝑆 is an ∞-category, this monad can be
applied fibrewise to give a monad 𝑇𝑆 on the∞-category Laycart

/𝑆 of categories fibred in
layered∞-categories.

Under the straightening/unstraightening identification

Laycart
/𝑆 ≃ Fun(𝑆op, Lay) ,

the monad 𝑇𝑆 corresponds to the monad on Fun(𝑆op, Lay) given by applying 𝑇 object-
wise. Consequently, the∞-category of 𝑇𝑆-algebras is equivalent to the∞-category of
functors from 𝑆op to the∞-category of profinite layered∞-categories.

13.6.6 Definition. Let 𝑆 be an ∞-category. An ∞-category over 𝑆 fibred in profinite
layered∞-categories is a 𝑇𝑆-algebra. If𝛱 → 𝑆 is an∞-category fibred in layered∞-cat-
egories, then a fibrewise profinite structure on𝛱 → 𝑆 is a𝑇𝑆-algebra structure on𝛱 → 𝑆.
We write Laycart,∧

𝜋,/𝑆 for the∞-category of 𝑇𝑆-algebras.
30That is, 𝑇 is the right Kan extension of the inclusion Lay𝜋 ↪ Lay of 𝜋-finite layered∞-categories along

itself.

145

http://www.math.harvard.edu/~lurie/papers/HTT.pdf#theorem.6.3.1.7
http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf#theorem.A.7.4.1
http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf#theorem.A.7.5.3


13.6.7 Warning. One might also contemplate the∞-category Pro(Laycart
𝜋,/𝑆) of proöb-

jects in the full subcategory
Laycart
𝜋,/𝑆 ⊆ Lay

cart
/𝑆

spanned by those cartesian fibrations whose fibres are 𝜋-finite layered ∞-categories.
This is generally not equivalent to the∞-category of categories over 𝑆 fibred in profinite
layered∞-categories. Under straightening/unstraightening, the∞-category Laycart,∧

𝜋,/𝑆 is
equivalent to the∞-category Fun(𝑆op, Lay∧𝜋), whereas Pro(Laycart

𝜋,/𝑆) is equivalent to the
∞-category Pro(Fun(𝑆op, Lay𝜋)). These coincide when 𝑆 is a finite poset [HTT, Propo-
sition 5.3.5.15], but otherwise typically do not coincide.

13.6.8. Let 𝑆 be an∞-category. Then the∞-category of spectral topos fibrations over 𝑆
is equivalent to the∞-category Laycart,∧

𝜋,/𝑆 . Let us make the equivalence explicit. If𝑿 → 𝑆
is a spectral topos fibration, then we define an∞-category over 𝑆 fibred in layered∞-
categories

𝛱𝑆,∧(∞,1)(𝑿) → 𝑆

as follows. An object of𝛱𝑆,∧(∞,1)(𝑿) is a pair (𝑠, 𝜈), where 𝑠 ∈ 𝑆 and 𝜈∗ ∶ 𝑺 → 𝑿𝑠 is a point.
A morphism (𝑠, 𝜈) → (𝑡, 𝜉) is a morphism 𝑓∶ 𝑠 → 𝑡 of 𝑆 and a natural transformation
𝜈∗ → 𝑓∗𝜉∗. The∞-category𝛱𝑆,∧(∞,1)(𝑿) fibred in layered∞-categories admits a canoni-
cal fibrewise profinite structure; the fibre𝛱𝑆,∧(∞,1)(𝑿)𝑠 over an object 𝑠 ∈ 𝑆 is the profinite
stratified shape𝛱∧(∞,1)(𝑿𝑠).

In the other direction, if𝛱 → 𝑆 is an∞-category over 𝑆 fibred in profinite layered
∞-categories, then let𝑋0 → 𝑆 denote the cocartesian fibration in which the objects are
pairs (𝑠, 𝐹) consisting of an object 𝑠 ∈ 𝑆 and a functor 𝐹∶ 𝛱𝑠 → 𝑺𝜋, and a morphism
(𝑓, 𝜙) ∶ (𝑠, 𝐹) → (𝑡, 𝐺) consists of a morphism 𝑓∶ 𝑠 → 𝑡 of 𝑆 and a natural transforma-
tion 𝜙∶ 𝑓!𝐹 → 𝐺. Then (𝛱̃)coh<∞ is equivalent to the subcategory of𝑋0 whose objects are
those pairs (𝑠, 𝐹) in which 𝐹 is continuous and whose morphisms are those pairs (𝑓, 𝜙)
in which 𝜙 is continuous.

13.6.9 Construction. If 𝑆 is an∞-category and𝒀 is a bounded coherent topos, then the
projection𝒀×𝑆 → 𝑆 is a bounded coherent topos fibration. The assignment𝒀 ↦ 𝒀 × 𝑆
defines a functor from the∞-category of bounded coherent topoi to the∞-category of
bounded coherent topos fibrations over 𝑆. This functor admits a left adjoint, which we
denote by |−|𝑆. At the level of∞-pretopoi, (|𝑿|𝑆)coh<∞ is equivalent to the∞-category of
cocartesian sections of 𝑿coh

<∞ → 𝑆, i.e., the limit of the corresponding functor from 𝑆 to
bounded∞-pretopoi.

Now we arrive at the main topos-theoretic result.

13.6.10 Proposition. Let 𝑆 be an∞-category, and let𝑿 → 𝑆 be a spectral topos fibration.
Then the∞-pretopos (|𝑿|𝑆)coh<∞ is equivalent to the∞-category of functors𝐹∶ 𝛱𝑆,∧(∞,1)(𝑿) →
𝑺𝜋 with the following properties.

→ 𝐹 carries any cartesian edge to an equivalence.

→ For any object 𝑠 ∈ 𝑆, the restriction 𝐹|𝛱∧(∞,1)(𝑿𝑠) is continuous.
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→ 𝐹 is uniformly truncated in the sense that there exists an 𝑁 ∈ 𝑵 such that for any
object (𝑠, 𝜈) ∈ 𝛱𝑆,∧(∞,1)(𝑿), the space 𝐹(𝑠, 𝜈) is𝑁-truncated.

Proof. The∞-pretopos (|𝑿|𝑆)coh<∞ can be identified with the∞-category of cocartesian
sections of𝑿coh

<∞ → 𝑆. The description of (13.6.8) completes the proof.

Please note that the last condition of Proposition 13.6.10 is automatic if 𝑆 has only
finitely many connected components (e.g., 𝑆 = 𝜟).

13.6.11 Example. If 𝑋∗ is a simplicial scheme, then the∞-category over 𝜟 fibred in
profinite layered∞-categories 𝛱𝛥,∧(∞,1)(𝑋∗,ét) associated to the spectral topos fibration
𝑋∗,ét → 𝜟 is the 1-category Gal𝛥(𝑋∗) of Construction 13.7.6. In this case, Proposi-
tion 13.6.10 implies that (|𝑋∗,ét|𝛥)coh<∞ is equivalent to the∞-category of functors

Gal𝛥(𝑋∗) → 𝑺𝜋

that carry cartesian edges to equivalences and restrict to continuous functorsGal𝛥(𝑋𝑚) →
𝑺𝜋 for all𝑚 ∈ 𝜟.

Finally, since the profinite stratified shape is a delocalisation of the protruncated
shape (Theorem 11.2.3) we deduce the following:

13.6.12 Proposition. Let 𝑆 be an∞-category, and let𝑿 → 𝑆 be a spectral topos fibration.
Then the protruncated shape of |𝑿|𝑆 is equivalent to the protruncated homotopy type of
𝛱𝑆,∧(∞,1)(𝑿).

13.6.13 Example. If 𝑋∗ is a simplicial scheme, then the protruncated homotopy type
of the fibrewise profinite category Gal𝛥(𝑋∗) is equivalent to the Friedlander étale topo-
logical type of𝑋∗Theorem 13.5.1.

13.7 Exodromy for schemes and simplicial schemes
In this subsection we explain the Exodromy Equivalence of Theorem B in the context of
schemes and simplicial schemes.

13.7.1 Construction. Let 𝑋 be a coherent scheme. The 𝑋zar-stratified∞-topos 𝑋ét is
spectral. Our∞-Categorical Hochster Duality Theorem (Theorem 10.3.1) implies that
𝑋ét ≃ G̃al(𝑋), and thus

𝑋constr
ét ≃ Fun(Gal(𝑋), 𝑺𝜋) .

Here, at last, is the Exodromy Equivalence. If 𝑋 and 𝑌 are coherent schemes, then the
natural map

MapTop∞(𝑋ét, 𝑌ét) → MapStr∧𝜋 (Gal(𝑋),Gal(𝑌))

is an equivalence.
We also have an equivalence

mat(Gal(𝑋)) ≃ Pt(𝑋ét) ,
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and this category can be described in the following manner: an object is a geometric
point𝑥 → 𝑋, and for any geometric points𝑥 → 𝑋 and𝑦 → 𝑋, the spaceMapPt(𝑋ét)(𝑥, 𝑦)
is identified with the space of points Pt(𝑥 ×⃖𝑋 𝑦) ≃ mat(𝛱∧∞(𝑥 ×⃖𝑋 𝑦)). This is a dis-
crete space whose components are specialisations 𝑥 ⇜ 𝑦. In other words, mat(Gal(𝑋))
agrees with the underlying 1-category denoted Gal(𝑋) in the Introduction preceding
Theorem A.

The profinite stratified space Gal(𝑋) is thus 1-truncated; that is, it is a profinite 1-
category, and so in light of (11.3.8), it can be regarded as a category object in the category
of Stone topological spaces.The topology onGal(𝑋) is precisely the one described in the
introduction.

13.7.2 Construction. WriteAff for the 1-category of affine schemes. We employ [HTT,
Corollary 3.2.2.13] to construct an∞-category PShét and a cocartesian fibration

PShét → Affop

in which the objects of PShét are pairs (𝑆, 𝐹) consisting of an affine scheme 𝑆 and a
presheaf (of spaces) on the small étale site of 𝑆, and a morphism (𝑆, 𝐹) → (𝑇, 𝐺) is a pair
(𝑓, 𝜙) consisting of amorphism𝑓∶ 𝑇 → 𝑆 and amorphism of presheaves 𝜙∶ 𝑓−1𝐹 → 𝐺
on the small étale site of 𝑇. Define Shét ⊂ PShét to be the full subcategory spanned by
those pairs (𝑆, 𝐹) in which 𝐹 is a sheaf; then Shét → Affop is a topos fibration. Define
Constrét ⊂ Shét to be the further full subcategory spanned by those pairs (𝑆, 𝐹) in which
𝐹 is a (nonabelian) constructible sheaf (Definition 10.4.1); then Constrét → Affop is a
cocartesian fibration.

13.7.3 Definition. Let 𝑋 → Aff be a stack, i.e., a right fibration that is classified by an
accessible fpqc sheafAffop → 𝑺. A (nonabelian) constructible sheaf on𝑋 is a cocartesian
section

𝐹∶ 𝑋op → Constrét
over Affop. We write Constrét(𝑋) for the∞-category of constructible sheaves on𝑋.

13.7.4 Warning. This can only be expected to be a reasonable definition for coherent
stacks.

13.7.5. Informally, a constructible sheaf 𝐹 on 𝑋 assigns to every affine scheme 𝑆 over
𝑋 a constructible sheaf 𝐹𝑆 and to every morphism 𝑓∶ 𝑆 → 𝑇 of affine schemes an equiv-
alence 𝐹𝑆 ≃ 𝑓∗𝐹𝑇. In other words, the∞-category of constructible sheaves on 𝑋 is the
limit of the diagram𝑋op → Cat∞ given by the assignment 𝑆 ↦ Constrét(𝑆).

Of course, since 𝑋 is not a small category, it is not obvious that this limit exists in
Cat∞. However, if 𝑋 contains a small limit-cofinal full subcategory 𝑌, then the desired
limit exists.

13.7.6 Construction. Let 𝑌∗ be a simplicial scheme. Denote by Gal𝛥(𝑌∗) the following
1-category. The objects are pairs (𝑚, 𝜈) consisting of an object 𝑚 ∈ 𝜟 and a geometric
point 𝜈 → 𝑌𝑚. A morphism (𝑚, 𝜈) → (𝑛, 𝜉) of Gal𝛥(𝑌∗) is a morphism 𝜎∶ 𝑚 → 𝑛
of 𝜟 and a specialisation 𝜈 ⇜ 𝜎∗(𝜉). This category has an obvious forgetful functor
Gal𝛥(𝑌∗) → 𝜟, which is a cartesian fibration. A morphism (𝑚, 𝜈) → (𝑛, 𝜉) is cartesian
over 𝜎∶ 𝑚 → 𝑛 in 𝜟 if and only if the specialisation 𝜈 ⇜ 𝜎∗(𝜉) is an isomorphism.
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Thefibre over𝑚 ∈ 𝜟 is the category Gal(𝑌𝑚), which we regard as a profinite category.
(See Definition 13.6.4 for the precise notion of categories fibred in profinite categories.)

Now we conclude:
13.7.7 Proposition. If 𝑝∶ 𝑋 → Aff is a stack, and if𝑋 is presented by a simplicial scheme
𝑌∗, then we obtain an equivalence between the∞-category Constrét(𝑋) and the∞-cate-
gory of functors

Gal𝛥(𝑌∗) → 𝑺𝜋
that carry cartesian edges to equivalences and for all𝑚 ∈ 𝜟 restrict to a continuous functor
Gal(𝑌𝑚) → 𝑺𝜋.

Recall that the protruncated étale topological type of a simplicial scheme 𝑌∗ can
be identified with the colimit in protruncated spaces of the simplicial object that carries
𝑚 ∈ 𝜟 to the protruncated étale shape of the fibres of the cartesian fibrationGal𝛥(𝑌∗) → 𝜟
agree with the protruncated étale shape of the schemes 𝑌𝑚, it follows from Proposi-
tion 13.6.12 that the protruncated shape of the the total category Gal𝛥(𝑌∗) is the colimit
of this simplicial diagram. In other words:

13.7.8Theorem. Theclassifying protruncated space ofGal𝛥(𝑌∗) recovers the protruncated
étale topological type of 𝑌∗.

Combining this with Proposition 13.7.7 we obtain:
13.7.9 Corollary. Let 𝑛 ∈ 𝑵 and let 𝑋 be an Artin 𝑛-stack. If 𝑌∗ is a presentation of 𝑋,
then the localisation of Gal𝛥(𝑌∗) at the cartesian edges classifies constructible sheaves on
𝑋.
Corollary 13.7.9 speaks only of Artin 𝑛-stacks, but of course applies just as well to any
coherent fpqc stack with a presentation as a simplicial scheme.
13.7.10 Example. Let𝐺 be an affine group scheme over a ring 𝑘, and let𝑋 be a 𝑘-scheme
with an action of 𝐺. Then we have the usual simplicial 𝑘-scheme 𝐵𝑘,∗(𝑋, 𝐺, 𝑘) whose 𝑛-
simplices are𝑋 ×Spec 𝑘 𝐺𝑛; this presents the quotient stack𝑋/𝐺.

Thus the category of𝐺-equivariant (nonabelian) constructible sheaves on𝑋 is equiv-
alent to the category of continuous functors

Gal𝛥(𝐵𝑘,∗(𝑋, 𝐺, 𝑘)) → 𝑺𝜋
that carry the cartesian edges to equivalences. If 𝛬 is a ring, then the derived category
of 𝐺-equivariant constructible sheaves of 𝛬-modules on𝑋 is equivalent to the category
of continuous functors

Gal𝛥(𝐵𝑘,∗(𝑋, 𝐺, 𝑘)) → Perf (𝛬)
that carry cartesian edges to equivalences.

The objects of the category Gal𝛥(𝐵𝑘,∗(𝑋, 𝐺, 𝑘)) can be thought of as tuples

(𝑚,𝛺, 𝑥0, 𝑔1,… , 𝑔𝑚)
in which 𝑚 ∈ 𝜟 is an object, 𝛺 is a separably closed field, and 𝑥0 ∶ Spec𝛺 → 𝑋 and
𝑔1,… , 𝑔𝑚 ∶ Spec𝛺 → 𝐺 are pointswith the property that (𝑥0, 𝑔1,… , 𝑔𝑚) is a geometric
point of𝑋 ×Spec 𝑘 𝐺𝑚, so that 𝛺 is the separable closure of the residue field of the image
of the (𝑥0, 𝑔1,… , 𝑔𝑚) in the Zariski space of𝑋 ×Spec 𝑘 𝐺𝑚.
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13.8 Stratified Riemann ExistenceTheorem
We now use the Artin Comparison Theorem to prove a straified refinement of the Rie-
mann Existence Theorem of Artin–Mazur–Friedlander (Theorem 12.5.3), giving a com-
parison between étale and analytic stratified homotopy types for schemes of finite type
over the complex numbers. To do so, we invoke the critical basechange result of Artin.
A straightforward Postnikov argument permits us to reformulate Artin’s theorem as fol-
lows.

13.8.1Theorem (ArtinComparison; [SGA4iii, ExposéXVI,Théorème4.1]). Let𝑓∶ 𝑋 →
𝑌 be a finite type morphism of finite type 𝑪-schemes, and let 𝐹 ∈ 𝑋ét be a constructible
sheaf. Then the natural Beck–Chevalley morphism

𝜀∗𝑓ét∗ 𝐹 → 𝑓an∗ 𝜀∗𝐹

is an equivalence, where 𝜀∗ ∶ 𝑋an → 𝑋ét is the geometric morphism of Recollection 12.5.2.

13.8.2 Construction. If 𝑋 is a scheme of finite type over 𝑪, then the topological space
𝑋an admits the evident profinite stratification 𝑋an → 𝑋zar, and 𝜀∗ is an 𝑋zar-stratified
geometric morphism.

If 𝑋zar → 𝑃 is a finite constructible stratification, then the topological space 𝑋an

also inherits a stratification𝑋an → 𝑃, which is conical.
On each stratum 𝑋𝑝, the functor 𝜀∗ restricts to a functor 𝑋lisse

𝑝,ét → (𝑋an
𝑝 )lisse (which

is an equivalence by Theorem 12.5.3), whence we obtain a functor

𝜀∗ ∶ 𝑋𝑃-constr
ét → (𝑋an)𝑃-constr

which in turn induces a 𝑃-stratified geometric morphism

𝜀𝑃∗ ∶ Sheff((𝑋an)𝑃-constr) → Sheff(𝑋𝑃-constr
ét )

of spectral 𝑃-stratified∞-topoi.
Please note that we also have the Exodromy Equivalence for stratified topological

spaces (Subexample 9.2.12), which provides an equivalence

𝛱∧(∞,1)(𝑋an; 𝑃) ≃ 𝛱∧(∞,1)(Sheff((𝑋an)𝑃-constr); 𝑃)

between the profinite completion (in the stratified sense) of the exit-path∞-category
of𝑋an and the profinite stratified shape of Sheff((𝑋an)𝑃-constr).

13.8.3 Proposition (Stratified Riemann Existence). Let𝑋 be a scheme of finite type over
𝑪, and let 𝑋zar → 𝑃 be a finite stratification. Then the geometric morphism 𝜀𝑃∗ is an
equivalence. Consequently, 𝜀∗ induces an equivalence

𝛱∧(∞,1)(𝑋an; 𝑃) ≃ 𝛱∧(∞,1)(𝑋an; 𝑃) ⥲ 𝛱ét,∧
(∞,1)(𝑋; 𝑃)

of profinite 𝑃-stratified spaces.
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Proof. On strata, 𝜀𝑃∗ is an equivalence by the Riemann ExistenceTheorem. For any point
𝑝 ∈ 𝑃, let uswrite𝑋𝐿𝑝 for the Stone∞-topos Sheff((𝑋an

𝑝 )lisse) ≃ Sheff(𝑋lisse
𝑝,ét ). For any points

𝑝 < 𝑞, the geometric morphism 𝜀𝑃∗ on the link from 𝑝 to 𝑞 is a geometric morphism of
Stone∞-topoi

𝑋𝐿𝑝 ×⃖
Sheff((𝑋an)𝑃-constr)

𝑋𝐿𝑞 → 𝑋𝐿𝑝 ×⃖
Sheff(𝑋𝑃-constr

ét )
𝑋𝐿𝑞 .

To see that this is an equivalence, since the oriented fibre product is invariant under
localisations of the corner (Example 6.5.11), we may assume that 𝑃 = {𝑝 ≤ 𝑞}, in which
case Sheff((𝑋an)𝑃-constr) and Sheff(𝑋𝑃-constr

ét ) are each bounded coherent recollements of
𝑋𝐿𝑝 and𝑋𝐿𝑞 . Therefore it suffices to prove that the gluing functors coincide on truncated
coherent objects. That is, one needs to confirm that the natural transformation

𝜀∗𝑖ét,∗𝑗ét∗ → 𝑖an,∗𝑗an∗ 𝜀∗

is an equivalence when restricted to (𝑋𝐿𝑞 )coh<∞ ≃ 𝑋lisse
𝑞,ét . This now follows from the Artin

Comparison Theorem (Theorem 13.8.1) and naturality of 𝜀∗.

Passing to the limit over finite stratifications, we obtain the following.

13.8.4 Corollary. Let𝑋 be a scheme of finite type over𝑪. Then 𝜀∗ induces an equivalence

𝛱∧(∞,1)(𝑋an; 𝑋zar) ⥲ 𝛱ét,∧
(∞,1)(𝑋) .

13.9 Van Kampen
Let𝑋 be a coherent scheme. A nonempty closed subset𝑍 ⊂ 𝑋with dense, quasicompact
open complement 𝑈 ⊂ 𝑋 specifies a nondegenerate constructible stratification 𝑋zar →
[1], and we may – in an overindulgence of abusive notation – write

Gal(𝑋; 𝑍) ≔ Gal(𝑋/[1]) ,

which is a profinite [1]-stratified space. Its décollage is the functor sdop([1]) → 𝑺∧𝜋 given
by the diagram

𝛱ét,∧
∞ (𝑍) ← 𝛱∧∞(𝑍ét ×⃖𝑋ét

𝑈ét) → 𝛱ét,∧
∞ (𝑈) .

(Note that any subscheme structure on 𝑍 will do, as nilimmersions don’t affect the étale
∞-topos.) The profinite space𝛱∧∞(𝑍ét ×⃖𝑋ét

𝑈ét) is the deleted tubular neighbourhood of
𝛱ét,∧
∞ (𝑍) in𝛱ét,∧

∞ (𝑋).
When 𝑍 = {𝑧} with 𝜅(𝑧) separably closed, one may identify the deleted tubular

neighbourhood of 𝛱ét,∧
∞ (𝑍) ≃ ∗ in 𝛱ét,∧

∞ (𝑋) with the profinite étale shape of the punc-
tured Milnor ball𝑋sh

(𝑧) ∖ {𝑧}.
When𝑋 is a curve over a field 𝑘 and𝑍 = {𝑧} is a rational point, we obtain an identifi-

cation of the deleted tubular neighbourhood with the classifying space of ‘the’ profinite
decomposition group 𝐷𝑧 ⊆ 𝜋ét1 (𝑈). More generally, we may regard the deleted tubu-
lar neighbourhood𝛱∧∞(𝑍ét ×⃖𝑋ét

𝑈ét) as a kind of generalised ‘decomposition homotopy
type’.
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Our van Kampen theorem (Proposition 11.5.1) exhibits an equivalence of profinite
spaces

𝛱ét,∧
∞ (𝑋) ≃ 𝛱ét,∧

∞ (𝑍) ∪𝛱
∧
∞(𝑍ét×⃖𝑋ét𝑈ét) 𝛱ét,∧

∞ (𝑈) ,
which functions in the same manner as Friedlander’s van Kampen theorem [25, Propo-
sition 15.6].

13.9.1 Question. Cox [19; 20] also developed a deleted tubular neighbourhood for
schemes, which is what appears in Friedlander’s formulation of the van Kampen The-
orem. One is tempted to believe, therefore, that Cox’s deleted tubular neighbourhood
and our toposic version have, at the very least, equivalent profinite homotopy types. At
this point, unfortunately, we do not know.

14 Perfectly reduced schemes & reconstruction of abso-
lute schemes

We have shown that the étale∞-topos𝑋ét of a coherent scheme𝑋 can be reconstructed
from the profinite ∞-category 𝛱ét,∧

(∞,1)(𝑋). Following Grothendieck’s Brief an Faltings
[27, (8)], we can ask to what extent𝑋 itself can be recovered from𝑋ét. We first note that
there are three easily-spotted obstacles to the conservativity of the functor𝑋 ↦ 𝑋ét.

→ One must restrict attention to schemes over a base with suitable finiteness con-
ditions: for example, a nontrivial extension 𝛺 ⊂ 𝛺′ of algebraically closed fields
will give an equivalence of étale∞-topoi (which are of course each trivial).

→ The base must be sufficiently small: over 𝑪, for example, any two smooth proper
curves of the same genus have equivalent étale∞-topoi.

→ One must account for universal homeomorphisms: for example, the normalisa-
tion of the cuspidal cubic induces an equivalence of étale∞-topoi. In fact, any
universal homeomorphism induces an equivalence of étale∞-topoi; this is the
invariance topologique of the étale∞-topos [SGA 1, Exposé IX, 4.10] and [SGA
4ii, Exposé VIII, 1.1].

Thefirst twopoints compel us to impose serious finiteness conditions onour schemes,
and this last point compels us to consider the∞-category obtained from the 1-category
Sch of coherent schemes by inverting universal homeomorphisms. Fortunately, it is not
necessary to do something excessively abstract: there is a 1-categorical colocalisation
that performs this function; this is the perfection or absolute weak normalisation.

14.1 Universal homeomorphisms and equivalences ofGalois categories
Now we arrive at a sensitive question: under which circumstances does a morphism of
schemes induce an equivalence of étale topoi or, equivalently, of Galois categories? The
well-known theorem here is Grothendieck’s invariance topologique of the étale topos
[SGA 4ii, Exposé VIII, 1.1], which states that a universal homeomorphism induces an
equivalence on étale topoi. Let us reprove this result with the aid of Galois categories;
this will also provide us with a partial converse.
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14.1.1 Proposition. Let 𝑓∶ 𝑋 → 𝑌 be a morphism of schemes. If 𝑓 is radicial, then every
fibre of Gal(𝑋) → Gal(𝑌) is either empty or a singleton.31 Conversely, if 𝑓 is of finite type,
and if every fibre of Gal(𝑋) → Gal(𝑌) is either empty or a singleton, then 𝑓 is radicial.

Proof. If 𝑓 is radicial, then the map 𝑋zar → 𝑌zar is an injection, and for any point 𝑥0 ∈
𝑋zar, the map 𝐵𝐺𝜅(𝑥0) → 𝐵𝐺𝜅(𝑓(𝑥0)) on fibres is an equivalence since 𝜅(𝑓(𝑥0)) ⊆ 𝜅(𝑥0)
is purely inseparable. So for any geometric point 𝑦 with image 𝑦0, the fibre over 𝑦 is a
singleton.

Conversely, if 𝑓 is of finite type, and if every fibre of Gal(𝑋) → Gal(𝑌) is either
empty or a singleton, then certainly the map𝑋zar → 𝑌zar is an injection, whence 𝑓 is in
particular quasifinite. For any point𝑥0 ∈ 𝑋zar, the fibres of themap𝐵𝐺𝜅(𝑥0) → 𝐵𝐺𝜅(𝑓(𝑥0))
are each a singleton, whence it is an equivalence. Now since 𝜅(𝑓(𝑥0)) ⊆ 𝜅(𝑥0) is a finite
extension, it is purely inseparable.

14.1.2 Example. The finite type hypothesis in the second half of Proposition 14.1.1 is
of course necessary, as any nontrivial extension 𝐸 ⊂ 𝐹 of separably closed fields induces
the identity on trivial Galois categories.

14.1.3 Corollary. Let𝑓∶ 𝑋 → 𝑌 be amorphism of schemes. If𝑓 is radicial and surjective,
then every fibre of Gal(𝑋) → Gal(𝑌) is a singleton. Conversely, if 𝑓 is of finite type, and if
every fibre of Gal(𝑋) → Gal(𝑌) is a singleton, then 𝑓 is radicial and surjective.

The following is the Valuative Criterion, along with a simple argument [STK, Tag
03K8] that allows one to extend the fraction field of the valuation ring therein.

14.1.4 Lemma. Let 𝑓∶ 𝑋 → 𝑌 be a morphism of schemes. Then the following are equiv-
alent.

→ The morphism 𝑓 is universally closed.

→ For any witness 𝛾∶ Spec𝑉 → 𝑌 and any diagram

Spec𝐾 𝑋

Spec𝑉 𝑌

𝑓

𝛾

in which 𝐾 is the fraction field of 𝑉, there exists a lift 𝛾∶ Spec𝑉 → 𝑋.

14.1.5 Recollection. A functor 𝑓∶ 𝐶 → 𝐷 is a right fibration if and only if, for any
object 𝑥 ∈ 𝐶, the induced functor 𝐶/𝑥 → 𝐷/𝑓(𝑥) is an equivalence of categories. Dually,
𝑓 is a left fibration if and only if 𝑓op is a right fibration, so that for any object 𝑥 ∈ 𝐶, the
induced functor 𝐶𝑥/ → 𝐷𝑓(𝑥)/ is an equivalence of categories.

14.1.6 Proposition. Let 𝑓∶ 𝑋 → 𝑌 be a morphism of schemes. If 𝑓 is an integral mor-
phism, then Gal(𝑋) → Gal(𝑌) is a right fibration. Conversely, if Gal(𝑋) → Gal(𝑌) is a
right fibration, then 𝑓 is universally closed.

31By singleton we mean contractible groupoid.
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Proof. Assume that 𝑓 is integral. Then for every geometric point 𝑥 → 𝑋, the induced
morphism 𝑋(𝑥) → 𝑌(𝑓(𝑥)) is also integral, and by Schröer’s result [79, Lemma 2.3], it
is radicial as well. Hence at the level of Zariski topological spaces, 𝑋(𝑥),zar → 𝑌(𝑓(𝑥)),zar
is an inclusion of a closed subset; since source and target are each irreducible, and the
inclusion carries the generic point to the generic point, it is a homeomorphism. (In fact,
𝑋(𝑥) → 𝑌(𝑓(𝑥)) is a universal homeomorphism.) Thus

Gal(𝑋)/𝑥 ≃ Gal(𝑋(𝑥)) ≃ 𝑋(𝑥),zar → 𝑌(𝑓(𝑥)),zar ≃ Gal(𝑌(𝑓(𝑥))) ≃ Gal(𝑌)/𝑓(𝑥)

is an equivalence, whence Gal(𝑋) → Gal(𝑌) is a right fibration.
Conversely, assume that 𝑓 is of finite type and that Gal(𝑋) → Gal(𝑌) is a right fibra-

tion. We employ Lemma 14.1.4 to show that 𝑓 is universally closed; consider a witness
𝛾∶ Spec𝑉 → 𝑌 along with a diagram

Spec𝐾 𝑋

Spec𝑉 𝑌

𝜉

𝑓

𝛾

in which 𝐾 is the fraction field of 𝑉. Let 𝜓∶ 𝑦 → 𝑓(𝜉) be the morphism of Gal(𝑌)
witnessed by 𝛾, and let 𝜙∶ 𝑥 → 𝜉 be a lift thereof to Gal(𝑋). We obtain a square

𝑂sh
𝑌,𝑦 𝑉

𝑂sh
𝑋,𝑥 𝐾 ,

𝛾

𝜉

and since 𝑂sh
𝑌,𝑦 → 𝑂sh

𝑋,𝑥 is local, we obtain a lift 𝛾∶ 𝑂sh
𝑋,𝑥 → 𝑉, as required.

A universal homeomorphism is a morphism that is radicial, surjective, and univer-
sally closed. An equivalence of categories is a right fibration with fibres contractible
groupoids. We thus deduce:

14.1.7 Proposition. Let 𝑓∶ 𝑋 → 𝑌 be a morphism of schemes. If 𝑓 is a universal homeo-
morphism, then Gal(𝑋) → Gal(𝑌) is an equivalence. Conversely, if 𝑓 is of finite type, and
if Gal(𝑋) → Gal(𝑌) is an equivalence, then 𝑓 is a universal homeomorphism (which is
necessarily finite).

14.2 Perfectly reduced schemes
The notion of a perfect scheme is elsewhere defined only for 𝑭𝑝-schemes. Here, we ex-
tend this notion to arbitrary reduced schemes in a way that restricts to the usual familiar
notion on schemes in characteristic 𝑝.

Just as a reduced scheme receives no nontrivial nilimmersions, a perfect scheme
receives no nontrivial universal homeomorphisms. This is in fact a local condition that
can be expressed in very concrete terms:
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14.2.1 Lemma. The following are equivalent for a coherent scheme𝑋.

→ Any universal homeomorphism𝑋′ → 𝑋 in which𝑋′ is reduced is an isomorphism.

→ Any universal homeomorphism𝑋′ → 𝑋 admits a section.

→ There exists an affine open covering {Spec𝐴𝑖}𝑖∈𝐼 of 𝑋 such that for every 𝑖 ∈ 𝐼, the
following conditions obtain:

– for any 𝑓, 𝑔 ∈ 𝐴𝑖, if 𝑓2 = 𝑔3, then there is a unique ℎ ∈ 𝐴𝑖 such that 𝑓 = ℎ3
and 𝑔 = ℎ2; and

– for any prime number 𝑝 and any 𝑓, 𝑔 ∈ 𝐴𝑖, if 𝑓𝑝 = 𝑝𝑝𝑔, then there is a
unique element ℎ ∈ 𝐴𝑖 such that 𝑓 = 𝑝ℎ and 𝑔 = ℎ𝑝.

This is discussed in [STK, Tag 0EUK]. See also [54, 1.4 and 1.7; 73, Appendix B; 86,
Theorem 1].

14.2.2 Definition. A coherent scheme 𝑋 is said to be perfectly reduced – or, in the lan-
guage of [73, B.1], absolutely weakly normal – if 𝑋 satisfies the equivalent conditions of
Lemma 14.2.1. Denote by Schperf ⊂ Sch the full subcategory spanned by the perfectly
reduced schemes.

A coherent scheme 𝑋 is said to be seminormal if and only if there exists an affine
open covering {Spec𝐴𝑖}𝑖∈𝐼 of 𝑋 such that for every 𝑖 ∈ 𝐼 and any 𝑓, 𝑔 ∈ 𝐴𝑖, if 𝑓2 = 𝑔3,
then there is a unique ℎ ∈ 𝐴𝑖 such that 𝑓 = ℎ3 and 𝑔 = ℎ2.

14.2.3 Example. A 𝑸-scheme is perfectly reduced if and only if it is seminormal.
Let 𝑝 be a prime number. A reduced 𝑭𝑝-scheme is perfectly reduced if and only if it

is perfect.

14.3 Perfection
We now show that Schperf is the result of inverting the universal homeomorphisms in
Sch. More precisely, we show that the inclusion Schperf ↪ Sch admits a right adjoint
𝑋 ↦ 𝑋perf in which the counit𝑋perf → 𝑋 is a universal homeomorphism.We first check
that inverse limits of universal homeomorphisms are universal homeomorphisms.

14.3.1 Lemma. Let 𝑋 be a scheme. Let 𝐴 be an inverse category, and𝑊∶ 𝐴 → Sch/𝑋 a
diagram of𝑋-schemes such that for any object 𝛼 ∈ 𝐴, the structure morphism 𝑝𝛼 ∶ 𝑊𝛼 →
𝑋 is a universal homeomorphism. Then the natural morphism

𝑝∶ 𝑊′ ≔ lim
𝛼∈𝐴op
𝑊𝛼 → 𝑋

is a universal homeomorphism.

Proof. All the bonding morphisms𝑊𝛼 → 𝑊𝛼′ are universal homeomorphisms. It fol-
lows from [EGA IV3, 8.3.8(i)] that𝑝 is surjective. For anyfield 𝑘, the diagram𝑊′(𝑘) ∶ 𝐴op →
Set is a diagram of injections, whence for any 𝛼 ∈ 𝐴op, the map𝑊′(𝑘) → 𝑊𝛼(𝑘) is an
injection; thus 𝑝 is a universal injection. It thus remains to show that 𝑝 is integral. Since
𝑊′ is a diagram of affine 𝑋-schemes, it is enough to observe that the filtered colimit
colim𝛼∈𝐴 𝑝𝛼,∗𝑂𝑊𝛼 is an integral 𝑂𝑋-algebra.
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14.3.2 Proposition. The inclusion Schperf ↪ Sch admits a right adjoint, and the counit
𝑋perf → 𝑋 is a universal homeomorphism.
Proof. For any coherent scheme 𝑋, let 𝑈𝑋 ⊂ Sch/𝑋 be the full subcategory spanned by
the universal homeomorphisms𝑝∶ 𝑌 → 𝑋. Limit-cofinal therein is the full subcategory
𝑈𝑓𝑋 spanned by the finite universal homeomorphisms. Hence the limit of this diagram
of 𝑋-schemes exists and is a universal homeomorphism 𝜀∶ 𝑋perf → 𝑋. Any universal
homeomorphism 𝑌 → 𝑋perf admits a section, whence 𝑋perf is perfect. Moreover, if 𝑍
is perfect, then for any morphism 𝑓∶ 𝑍 → 𝑋, the pullback 𝑍 ≅ 𝑍 ×𝑋 𝑋perf → 𝑋perf
provides an inverse to the natural map Mor(𝑍,𝑋perf) → Mor(𝑍,𝑋), whence 𝜀 is a colo-
calisation of Sch relative to Schperf.

14.3.3 Corollary. The∞-category obtained from the 1-category Sch by inverting univer-
sal homeomorphisms is equivalent to Schperf.
14.3.4 Definition. We call the right adjoint 𝑋 ↦ 𝑋perf the perfection functor or the
absolute weak normalisation.
14.3.5. David Rydh [73, Appendix B] presented an alternative description of this func-
tor: if 𝑋 is a reduced coherent scheme whose set of irreducible components is finite, or,
respectively, an affine scheme, then one may form ‘the’ absolute integral closure 𝑋 of
𝑋 [3] or, respectively, ‘the’ total integral closure 𝑋 of 𝑋 [24; 35]. In either case, one can
show that𝑋perf is isomorphic to the weak normalisation of𝑋 (in the sense of Andreotti–
Bombieri [2, Teorema 2]) under𝑋 → 𝑋.
14.3.6 Example. For reduced𝑸-schemes, the perfection is the seminormalisation [STK,
Tag 0EUT].
14.3.7 Example. Let 𝑝 be a prime number. If 𝑋 is a reduced 𝑭𝑝-scheme then we have
[12, Lemma 3.8]

𝑋perf ≅ lim( ⋯ 𝑋 𝑋𝜙𝑋 𝜙𝑋 ) ,

where 𝜙𝑋 is the absolute Frobenius.
14.3.8 Definition. A topological morphism from a scheme 𝑋 to a scheme 𝑌 is an mor-
phism 𝜙∶ 𝑋perf → 𝑌. If 𝜙 induces an isomorphism 𝑋perf ⥲ 𝑌perf, then it is said to be a
topological equivalence from𝑋 to 𝑌.
14.3.9. Let 𝑋 and 𝑌 be schemes. Consider the following category 𝑇(𝑋, 𝑌). The objects
are diagrams

𝑋 ← 𝑋′ → 𝑌
in which𝑋 ← 𝑋′ is a universal homeomorphism. A morphism

from 𝑋 ← 𝑋′ → 𝑌 to 𝑋 ← 𝑋″ → 𝑌
is a commutative diagram

𝑋′

𝑋 𝑌

𝑋″
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in which the vertical morphism is (of necessity) a universal homeomorphism.The nerve
of the category 𝑇(𝑋, 𝑌) is equivalent to the set Mor(𝑋perf, 𝑌) ≅ Mor(𝑋perf, 𝑌perf) of topo-
logical morphisms from𝑋 to 𝑌.

14.3.10. The point now is that Gal, viewed as a functor from Schperf to categories, is
conservative.

14.3.11 Definition. Let 𝑃 be a property of morphisms of schemes that is stable under
base change and composition. We will say that a morphism 𝑓∶ 𝑋 → 𝑌 is topologically
𝑃 if and only if it is topologically equivalent to a morphism of schemes 𝑓′ ∶ 𝑋′ → 𝑌′
with property 𝑃.

14.3.12. Let 𝑃 be a property of morphisms of schemes that is stable under base change
and composition. The class of topologically 𝑃 morphisms is the smallest class of mor-
phisms 𝑃𝑡 that contains 𝑃 and satisfies the following condition: for any commutative
diagram

𝑋 𝑌

𝑋′ 𝑌′

𝑓

𝜙 𝜓

𝑓′

in which 𝜙 and 𝜓 are universal homeomorphisms, the morphism 𝑓 lies in 𝑃𝑡 if and only
if 𝑓′ does.

A morphism 𝑓∶ 𝑋 → 𝑌 of perfectly reduced schemes is topologically 𝑃 precisely
when it factors as a universal homeomorphism𝑋 → 𝑋′ followed by a morphism𝑋′ →
𝑌 with property 𝑃.

14.3.13Example. Amorphism𝑓∶ 𝑋 → 𝑌of perfectly reduced schemes is topologically
radicial, surjective, universally closed, or integral if and only if it is radicial, surjective,
universally closed, or integral (respectively).

14.3.14Example. Amorphism𝑓∶ 𝑋 → 𝑌of perfectly reduced schemes is topologically
étale if and only if it is étale. Indeed, if 𝑓′ ∶ 𝑋′ → 𝑌 is étale, then𝑋′ is perfectly reduced
[73, B.6(ii)].

14.4 Grothendieck’s conjecture and the proof ofTheorem A
In this subsection we discuss the relationship between the Galois category of a coherent
scheme and Grothendieck’s anabelian programme.

14.4.1 Definition. By an absolute scheme, we shall mean a perfectly reduced scheme𝑋
such that 𝑋 → Spec𝒁 is topologically essentially of finite type over Spec𝒁. Denote by
Schabs ⊂ Schperf the subcategory whose objects are absolute schemes and whose mor-
phisms are of finite type.

Chevalley’s theorem ensures that any morphism of finite presentation between co-
herent schemes carries constructible sets to constructible sets.We codify this topological
condition.
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14.4.2 Definition. If 𝑆 and 𝑇 are spectral topological spaces, then a quasicompact con-
tinuous map 𝑓∶ 𝑆 → 𝑇 is said to be admissible if and only if the image of any con-
structible subset of 𝑆 under 𝑓 is constructible.

Accordingly, if 𝛱′ and 𝛱 are profinite stratified spaces, then a morphism 𝛱′ →
𝛱 is said to be admissible if and only if the induced quasicompact continuous map of
spectral topological spaces ℎ0𝛱′ → ℎ0𝛱 is admissible. We write Str∧,adm𝜋 ⊂ Str∧𝜋 for
the subcategory whose objects are profinite stratified spaces and whose morphisms are
admissible morphisms.

Likewise, if𝑿 and𝒀 are bounded coherent∞-topoi, then a coherent geometricmor-
phism 𝑓∗ ∶ 𝑿 → 𝒀 is said to be admissible if and only if the induced quasicompact con-
tinuous map of spectral topological spaces 𝑆(𝑿) → 𝑆(𝒀) is admissible (Notation 9.6.8).
We write

Topbc,adm
∞ ⊂ Topbc

∞
for the subcategorywhose objects are bounded coherent∞-topoi andwhosemorphisms
are admissible geometric morphisms.

14.4.3. If 𝑆 and 𝑇 are Jacobson spectral topological spaces, then a quasicompact con-
tinuous map 𝑓∶ 𝑆 → 𝑇 is admissible if and only if 𝑓 carries closed points to closed
points. Similarly, if𝛱′ and𝛱 are profinite stratified spaces such that ℎ0𝛱′ and ℎ0𝛱 are
Jacobson spectral topological spaces, then a morphism 𝑓∶ 𝛱′ → 𝛱 is admissible if and
only if 𝑓 carries minimal objects to minimal objects.

Here is the ‘tantalising conjecture’ of Grothendieck in his letter to Faltings [27, p. 7]:

14.4.4 Conjecture. The functor

Schabs → (Topbc,adm
∞ )/(Spec𝒁)ét

given by the assignment 𝑋 ↦ 𝑋ét is fully faithful. In particular, if 𝑋 and 𝑌 are absolute
schemes, then any admissible geometricmorphism𝑋ét → 𝑌ét is induced by somemorphism
𝑋 → 𝑌 of finite type.

From this conjecture we may deduce a stratified anabelian result:

14.4.5 Corollary. Assume Conjecture 14.4.4; then the functor

Schabs → (Str∧,adm𝜋 )/𝛱ét,∧
(∞,1)(Spec𝒁)

given by the assignment 𝑋 ↦ 𝛱ét,∧
(∞,1)(𝑋) is fully faithful. In particular, if 𝑋 and 𝑌 are ab-

solute schemes, then any admissible profinite functor𝛱ét,∧
(∞,1)(𝑋) → 𝛱ét,∧

(∞,1)(𝑌) is induced
by a morphism𝑋 → 𝑌 of finite type.

An early paper of Voevodsky [85] provides a proof of Conjecture 14.4.4 for normal
absolute schemes in characteristic 0.
14.4.6Theorem ([85, Theorem 3.1]). Let 𝑘 be a finitely generated field of characteristic 0,
and write Schnorm,𝑘 for the category of reduced normal schemes of finite type over 𝑘. Then
the functor

Schnorm,𝑘 → (Topbc,adm
∞ )/(Spec 𝑘)ét

given by the assignment𝑋 ↦ 𝑋ét is fully faithful.
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Voevodsky also claims that his proof – with some modifications – will work when 𝑘 is a
finitely generated field of characteristic 𝑝 and of transcendence degree ≥ 1.

Voevodsky’s result combinedwithConceptualCompleteness (Theorem5.11.2=[SAG,
Theorem A.9.0.6]) show that a morphism 𝑓∶ 𝑋 → 𝑌 of such schemes is an isomor-
phism if and only if 𝑓 induces and equivalence on categories of points Pt(𝑋ét) → Pt(𝑌ét)
of the corresponding étale topoi. Combining our∞-categorical Hochster Duality Theo-
remwith Voevodsky’sTheorem and our identification of𝛱ét,∧

(∞,1)(𝑋)with the topological
category Gal(𝑋) (Construction 13.7.1), we can upgrade this conservativity result to the
following strong reconstruction theorem for these schemes:

14.4.7Theorem. Let 𝑘 be a finitely generated field of characteristic 0.Then for any reduced
normal 𝑘-schemes𝑋 and 𝑌 of finite type, the natural map

Mor𝑘(𝑋, 𝑌) → Mor𝐵𝐺𝑘(Gal(𝑋),Gal(𝑌))

identifies Mor𝑘(𝑋, 𝑌)with the subgroupoid of continuous functors Gal(𝑋) → Gal(𝑌) that
carry minimal objects to minimal objects.

In particular, if𝑋 and 𝑌 are reduced normal 𝑘-schemes of finite type, and Gal(𝑋) and
Gal(𝑌) are equivalent as topological categories over 𝐵𝐺𝑘, then𝑋 and 𝑌 are isomorphic.

Thus the category of reduced normal 𝑘-schemes of finite type can be embedded as a
subcategory of profinite categories with an action of 𝐺𝑘, as asserted in Theorem A.

The data of the map Gal(𝑋) → 𝐵𝐺𝑘 is the same as a continuous 𝐺𝑘 action on the
fibre, which is Gal(𝑋𝑘) for some algebraic closure 𝑘 ⊃ 𝑘. Thus by Corollary 13.8.4, a
normal 𝑘-variety𝑋 can be reconstructed from𝛱∧(∞,1)(𝑋an

𝑘 ; 𝑋
zar
𝑘 ) with its 𝐺𝑘-action.

14.5 Example: Curves
In this section, we illustrate our main theorem by making explicit how one may recon-
struct a connected, smooth, complete curve over 𝑘 from a combination of stratified-
homotopy-theoretic and Galois-theoretic data.

14.5.1 Construction. Let 𝑛 ≥ 2 be an integer. Let 𝑋𝑛 be the poset {0, 1,… , 𝑛 − 1,∞},
where 0, 1,… , 𝑛 − 1 are pairwise incomparable, and for each 𝑖 ∈ {0, 1,… , 𝑛 − 1} one has
𝑖 < ∞. Let 𝑝𝑛 ∶ 𝑋𝑛+1 → 𝑋𝑛 be the monotonic map defined by

𝑝𝑛(𝑖) ≔ {
𝑖 , 𝑖 ∈ {0, 1,… , 𝑛 − 1}
∞ , 𝑖 ∈ {𝑛,∞} .

We thus obtain an inverse system of posets

⋯→ 𝑋4 → 𝑋3 → 𝑋2
whose limit𝑋 in stratified topological spaces is the underlying Zariski topological space
of any connected, normal curve.

Now let 𝑔 ≥ 0 be an integer. Let 𝐶𝑔,𝑛 ∶ sdop(𝑋𝑛) → 𝑺 be the following profinite
spatial décollage over 𝑋𝑛. For any 𝑖 ∈ {0, 1,… , 𝑛 − 1}, set 𝐶𝑔,𝑛{𝑖} ≔ {𝑖}, and let 𝐶𝑔,𝑛{∞}
be the classifying space of the free group on generators

𝑎1, 𝑏1, 𝑎2, 𝑏2, … , 𝑎𝑔, 𝑏𝑔, 𝑐1, 𝑐2, … , 𝑐𝑛−1 .
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For any 𝑖 ∈ {0, 1,… , 𝑛 − 1}, let 𝐶𝑔,𝑛{𝑖 < ∞} be the classifying space of the free group on
a single generator 𝜉𝑖. The morphisms 𝐶𝑔,𝑛{𝑖 < ∞} → 𝐶𝑔,𝑛{∞} carry the generator 𝜉𝑖 to

{([𝑎1, 𝑏1][𝑎2, 𝑏2]⋯ [𝑎𝑔, 𝑏𝑔]) (𝑐1𝑐2…𝑐𝑛−1)
−1 , 𝑖 = 0

𝑐𝑖 , 𝑖 ≠ 0 .

Thus 𝐶𝑔,𝑛 – or rather the corresponding𝑋𝑛-stratified space – is the exit-path∞-catego-
ry of a closed smooth 2-manifold of genus 𝑔 relative to an𝑋𝑛-stratification in which the
closed strata are all points. Define a morphism of stratified spaces 𝑓𝑛 ∶ 𝐶𝑔,𝑛+1 → 𝐶𝑔,𝑛
over 𝑝𝑛 by carrying 𝑎𝑗 ↦ 𝑎𝑗, 𝑏𝑗 ↦ 𝑏𝑗, 𝑐𝑖 ↦ 𝑐𝑖 for 𝑖 ∈ {0, 1,… , 𝑛 − 1}, and 𝑐𝑛 to the
identity. This defines an inverse system of stratified spaces

⋯→ 𝐶𝑔,4 → 𝐶𝑔,3 → 𝐶𝑔,2 .

After profinite completion, we obtain an inverse system of profinite stratified spaces

⋯→ 𝐶𝑔,4 → 𝐶𝑔,3 → 𝐶𝑔,2

whose limit is an𝑋-profinite stratified space that we will call 𝐶𝑔.

For the remainder of this subsection we fix a finitely generated field 𝑘 of character-
istic 0 and an algebraic closure 𝑘 ⊃ 𝑘 of 𝑘. The following is immediate from Proposi-
tion 13.8.3.

14.5.2 Proposition. Let𝐶 be a connected, smooth, complete curve over 𝑘 of genus 𝑔. Then
Gal(𝐶𝑘) is equivalent to 𝐶𝑔.

Theorem 14.4.7 says that the curve 𝐶 can be reconstructed from the profinite strati-
fied space Gal(𝐶𝑘) ≃ 𝐶𝑔 with its action of 𝐺𝑘.

To explain this point in more detail, let us make the following slightly tongue-in-
cheek definition.

14.5.3 Definition. An incorporeal field extension of 𝑘 is a finite transitive 𝐺𝑘-set.

Galois theory shows that the assignment 𝐸 ↦ Gal(𝐸 ⊗𝑘 𝑘) defines an equivalence
from the category of finite extensions of 𝑘 to the category of incorporeal field extensions
of 𝑘. We partially extend this to curves.

14.5.4 Definition. An incorporeal curve over 𝑘 of genus 𝑔 is a continuous action of 𝐺𝑘
on 𝐶𝑔.

A 𝑘-morphism from an incorporeal curve (𝐶𝑔1 , 𝛼1) of genus 𝑔1 to an incorporeal
curve (𝐶𝑔2 , 𝛼2) of genus 𝑔2 is a 𝐺𝑘-equivariant functor

𝐶𝑔1 → 𝐶𝑔2 .

Let 𝑆 be an incorporeal field extension of 𝑘. An 𝑆-point of an incorporeal curve
(𝐶𝑔, 𝛼) over 𝑘 is a 𝐺𝑘-equivariant functor 𝑆 → 𝐶𝑔.
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Incorporeal curves are completely group-theoretic objects. They amount to inverse
families of free profinite groups along with actions of 𝐺𝑘.

14.5.5. Theorem 14.4.7 implies that the assignment𝐶 ↦ Gal(𝐶𝑘) defines a fully faithful
functor from connected, smooth, complete curves over 𝑘 to incorporeal curves over 𝑘.

Additionally, it allows one to reconstruct the points of 𝐶 from the corresponding
incorporeal curve. For any finite extension 𝐸 ⊃ 𝑘, we have a natural bijection between
the set of 𝐸-points of 𝐶 and the set of Gal(𝐸 ⊗𝑘 𝑘)-points of Gal(𝐶𝑘).

14.6 Fibrations of Galois categories
Wehave already seen (Proposition 14.1.6) that an integralmorphismof schemes induces
a right fibration of Galois categories and that a morphism that induces a right fibration
of Galois categories must be universally closed. Let us complete this picture.

Let us begin with an obvious characterisation of quasifinite morphisms. We will say
that a functor has finite fibres if each of its fibres is equivalent to a finite set.

14.6.1 Lemma. Let 𝑓∶ 𝑋 → 𝑌 be a morphism that is of finite type. Then 𝑓 is quasifinite
if and only if Gal(𝑋) → Gal(𝑌) has finite fibres.

Since proper quasifinite morphisms are finite, Proposition 14.1.6 now yields:

14.6.2 Proposition. Let 𝑓∶ 𝑋 → 𝑌 be a morphism that is separated and of finite type.
Then 𝑓 is finite if and only if Gal(𝑋) → Gal(𝑌) is a right fibration with finite fibres.

14.6.3 Proposition. Let 𝑓∶ 𝑋 → 𝑌 be a morphism of schemes. If 𝑓 is weakly étale, then
Gal(𝑋) → Gal(𝑌) is equivalent to a left fibration. Conversely, if 𝑋 and 𝑌 are perfectly
reduced, if 𝑓 is of finite presentation, and if Gal(𝑋) → Gal(𝑌) is a left fibration with finite
fibres, then 𝑓 is étale.

Proof. Assume that 𝑓 is weakly étale. Then for any geometric point 𝑥 → 𝑋, the mor-
phism𝑋(𝑥) → 𝑌(𝑓(𝑥)) is an isomorphism, whence the functor

Gal(𝑋)𝑥/ ≃ Gal(𝑋(𝑥)) → Gal(𝑌(𝑓(𝑥))) ≃ Gal(𝑌)𝑓(𝑥)/
is an equivalence, whence Gal(𝑋) → Gal(𝑌) is a left fibration.

Conversely, assume that 𝑋 and 𝑌 are perfectly reduced, that 𝑓 is of finite presen-
tation, and that Gal(𝑋) → Gal(𝑌) is a left fibration with finite fibres. So the functor
Gal(𝑋) → Gal(𝑌) is classified by a continuous functor Gal(𝑌) → Set fin, which in turn
corresponds to a constructible étale sheaf of finite sets on 𝑌, which in particular coin-
cides with the sheaf represented by𝑋. Since the sheaf represented by𝑋 is constructible,
there exists an étale map 𝑈 → 𝑌 and an effective epimorphism 𝑈 → 𝑋 of étale sheaves
on 𝑌. By descent,𝑋 → 𝑌 is étale.

We may as well combine the last two entries in our dictionary.

14.6.4 Recollection. A Kan fibration is a functor that induces a Kan fibration on nerves.
Equivalently, it is a functor that is both a left and right fibration. Equivalently, it is a func-
tor 𝐶 → 𝐷 that is equivalent to the Grothendieck construction applied to a diagram of
groupoids indexed on𝐷op that carries every morphism to an equivalence of groupoids.
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14.6.5 Proposition. Let 𝑓∶ 𝑋 → 𝑌 be a morphism of perfectly reduced schemes that is
separated and of finite presentation. Then 𝑓 is finite étale if and only if Gal(𝑋) → Gal(𝑌)
is a Kan fibration with finite fibres.

The following table provides a summary of the dictionary between perfectly reduced
schemes and profinite Galois categories that we have created.

Perfectly reduced schemes Profinite Galois categories

perfectly reduced scheme𝑋 profinite category Gal(𝑋)

morphism𝑋 → 𝑌 profinite functor Gal(𝑋) → Gal(𝑌)

open immersion 𝑈 ↪ 𝑌 cosieve inclusion Gal(𝑈) ↪ Gal(𝑌)

closed immersion 𝑍 ↪ 𝑌 sieve inclusion Gal(𝑍) ↪ Gal(𝑌)

locally closed immersion𝑊↪ 𝑌 interval inclusion Gal(𝑊) ↪ Gal(𝑌)

étale morphism𝑋 → 𝑌 left fibration Gal(𝑋) → Gal(𝑌) with finite
fibres

finite morphism𝑋 → 𝑌 right fibration Gal(𝑋) → Gal(𝑌) with finite
fibres

strictly henselian local scheme 𝑋 with
closed point 𝑥

profinite category Gal(𝑋)with initial object
𝑥

strict henselisation 𝑋(𝑥) at geometric point
𝑥 → 𝑋

undercategory Gal(𝑋)𝑥/

totally separably closed scheme 𝑋 with
generic point 𝑦

profinite category Gal(𝑋) with terminal
object 𝑦

strict normalisation𝑋(𝑦) at geometric point
𝑦 → 𝑋

overcategory Gal(𝑋)/𝑦

𝑃-stratified scheme profinite 𝑃-stratified space
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admissible, 158
Alexandroff Duality, 20
Alexandroff topology, 20
analytification, 138
Artin Comparison Theorem, 150

Beck–Chevalley condition, 91
bounded, 91

Beck–Chevalley transformation, 91
bounded coherent
∞-topos, 51

bounded coherent constructible
stratification, 107

bounded relfection, 38

∞-category
inverse, 16
layered, 27
locally 𝜋-finite, 28

∞-category of points, 54
centre

of a coëssential geometric
morphism, 82

coherent
geometric morphism, 39
object, 38
scheme, 19
∞-topos, 38

coherent constructible stratification,
107

Conceptual Completeness Theorem,
54

constructible, 122
profinite stratification, 23

cosieve, 20
coëssential

geometric morphism, 82

deleted tubular neighbourhood, 102
Deligne Completeness Theorem, 55
décollage

toposic, 109

enough points, 54
Exodromy Equivalence for Stratified

∞-Topoi, 127

finitary
∞-site, 39

formally constructible, 122

Galois category, 140
geometric morphism

coherent, 39
coëssential, 82
quasi-equivalence, 82

gluing square, 102

Hochster Duality, 22
hypercomplete
∞-topos, 55

hypercompletion, 55

inverse
∞-category, 16
limit, 16

layered
∞-category, 27

limit
inverse, 16

link, 24
of a gluing square, 102

local
∞-topos, 83

localisation
of an∞-topos, 85

locally 𝜋-finite
∞-category, 28

locally coherent
∞-topos, 38

locally 𝑛-coherent
∞-topos, 38

materialisation, 57
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𝑛-coherent
object, 38
∞-topos, 38

𝑛-connective
𝑃-stratified space, 27

𝑛-localic reflection, 38
𝑛-truncated
𝑃-stratified space, 26

oriented fibre product
of∞-categories, 17
of∞-topoi, 72

oriented pushout, 69
bounded coherent, 70

𝑃-stratified
∞-topos, 106

𝑃-stratified space
𝑛-connective, 27
𝑛-truncated, 26

𝑃-stratified space, 24
path
∞-topos, 71

perfection, 156
perfectly reduced, 155
𝜋-finite

space, 27
stratified space, 27

points
∞-category of, 54

Postnikov complete∞-topos, 38
Postnikov completion, 38
∞-presite, 39
∞-pretopos, 51
pro-𝑛-truncation, 56
profinite completion, 33
profinite stratification, 23

constructible, 23
profinite stratified shape, 127
Profinite Stratified Whitehead

Theorem, 129
protruncation, 56
pröobject, 16

quasi-equivalence
of∞-topoi, 82

recollement, 17
relative adjunction, 18
Riemann Existence Theorem, 138

𝑆-stratified homotopy type, 127
scheme

absolute, 157
absolutely weakly normal, 155
coherent, 19
perfectly reduced, 155
seminormal, 155

seminormal, 155
shape, 57
sieve, 20
∞-site

finitary, 39
space
𝜋-finite, 27
finite, 27

specialisation preorder, 20
spectral

topological space, 22
stratification, 21

bounded coherent constructible,
107

coherent constructible, 107
connective, 21
constructible, 21
finite, 21
noetherian, 21
nondegenerate, 21
of an∞-topos, 106

stratified
∞-topos, 106

stratified Postnikov tower, 26
Stratified Riemann Existence Theorem,

150
stratified space, 24
𝜋-finite, 27

stratum, 21, 24

topological space
spectral, 22

∞-topos
bounded coherent, 51
coherent, 38

171



hypercomplete, 55
local, 83
locally coherent, 38
locally 𝑛-coherent, 38
𝑛-coherent, 38
𝑛-localic, 37
𝑃-stratified, 106

Postnikov complete, 38
stratified, 106

van Kampen Theorem, 133

Whitehead’s Theorem for profinite
spaces, 62
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