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Abstract

In this note we show that the protruncated shape of a spectral ∞-topos is a
delocalization of its profinite stratified shape. This gives a way to reconstruct the
extended étale homotopy groups (i.e., the non-profinitely complete étale homotopy
groups) of a coherent scheme from its profinite Galois category.
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Introduction
Let 𝑋 be a coherent (i.e., quasicompact quasiseparated) scheme. In recent work with
Clark Barwick and Saul Glasman [3], we constructed a delocalization of the profinite
completion of the Artin–Mazur–Friedlander étale homotopy type of 𝑋 [1; 5]. We call
this delocalization the profinite Galois category Gal(𝑋) of 𝑋. The profinite Galois cat-
egory Gal(𝑋) is pro-object in finite categories, or, equivalently, a category object in
profinite topological spaces [2; 3, p. 5 & Construction 13.5]. The underling category
of Gal(𝑋) has objects geometric points of 𝑋 and morphisms specalizations in the étale
topology (i.e., is the category of points of the étale topos of𝑋). Concretely, given geomet-
ric points 𝑥 → 𝑋 and 𝑦 → 𝑋, a morphism 𝑥 → 𝑦 in Gal(𝑋) is a lift 𝑦 → 𝑋(𝑥) of the
geometric point 𝑦 → 𝑋 to the strict localization𝑋(𝑥) of𝑋 at 𝑥. The topology on Gal(𝑋)
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globalizes the profinite topology on the absolute Galois group Gal(𝜅(𝑥0)sep/𝜅(𝑥0)) of the
residue field 𝜅(𝑥0) at each point 𝑥0 ∈ 𝑋.

From the profinite category Gal(𝑋) we can extract a prospace 𝐻(Gal(𝑋)) by for-
mally inverting all morphisms. Our delocalization result [3, Examples 11.6 & 13.6] says
that 𝐻(Gal(𝑋)) and the étale homotopy type of 𝑋 become (canonically) equivalent af-
ter profinite completion. In this note we provide a stronger relationship between the
prospace𝐻(Gal(𝑋)) and the étale homotopy type: they agree up to protruncation. Mor-
phisms in the ∞-category Pro(Spc) of prospaces that induce equivalences after pro-
truncation are precisely those morphisms that become ♮-isomorphisms in the category
Pro(ℎSpc), in the terminology of Artin–Mazur [1, Definition 4.2].

A Theorem. Let 𝑋 be a coherent scheme and write 𝛱ét∞(𝑋) ∈ Pro(Spc) for the étale
homotopy type of𝑋. Then there is a natural natural map of prospaces

𝜃𝑋 ∶ 𝛱ét∞(𝑋) → 𝐻(Gal(𝑋)) .

Moreover, 𝜃𝑋 induces an equivalence on protruncations. As a consequence:

• For each integer 𝑛 ≥ 1 and geometric point𝑥 → 𝑋, we have canonical isomorphisms
of progroups

𝜋ét𝑛 (𝑋, 𝑥) ⥲ 𝜋𝑛(𝐻(Gal(𝑋)), 𝑥) ,
where 𝜋ét𝑛 (𝑋, 𝑥) is the 𝑛th homotopy progroup of the étale homotopy type of𝑋.

• For any ring 𝑅, there is an equivalence of∞-categories between local systems of 𝑅-
modules on 𝑋 that are uniformly bounded both below and above and continuous
functors Gal(𝑋) → 𝐷𝑏(𝑅) that carry every morphism to an equivalence.

The progroups 𝜋ét𝑛 (𝑋, 𝑥) are what we call the extended étale homotopy groups of 𝑋.
Note that the progroup 𝜋ét1 (𝑋, 𝑥) is the groupe fondamentale élargi of [SGA 3ii, Exposé
X, §6]; the usual étale fundamenal group of [SGA 1, Exposé V, §7] is the profinite com-
pletion of 𝜋ét1 (𝑋, 𝑥).

While the protruncated étale homotopy type of a connected Noetherian geometri-
cally unibranch scheme is already profinite [1,Theorem 11.1; 5,Theorem 7.3; DAG xiii,
Theorem 3.6.5], in general Theorem A provides more refined information about the
étale homotopy type, as illustrated in the following example.

B Example. Consider the nodal cubic curve

𝐶 = Spec(𝑪[𝑥, 𝑦]/(𝑦2 − 𝑥2(𝑥 + 1))

over the complex numbers.TheRiemannExistenceTheorem [1,Theorem12.9; 4, Propo-
sition 4.12; 5, Theorem 8.6] implies that the profinite completion of the étale homotopy
type of 𝐶 is equivalent to the profinite completion of the circle 𝑆1. It is well-known that,
in fact, the protruncation of the étale homotopy type of 𝐶 is 𝑆1; Theorem A provides an
easy ‘categorical’ explanation of this fact.

There is a continuous functor from Gal(𝐶) to the poset category {0 < 1} given by
sending the node point to 0 and every other geometric point to 1. The local ring𝑂𝐶,(𝑥,𝑦)
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at the node point has two prime ideals and the strict Henselization of 𝑂𝐶,(𝑥,𝑦) is isomor-
phic to the strict Henselization of

(𝑪[𝑢, 𝑣]/(𝑢𝑣))(𝑢,𝑣) .

Using this one sees that there are two lifts of the generic geometric point of𝐶 to the strict
localization of 𝐶 at the node. Hence the continuous functor Gal(𝐶) → {0 < 1} factors
through the category 𝐷 with two objects 0 and 1 and two distinct morphisms 0 ⇉ 1.
Moreover, the functor Gal(𝐶) → 𝐷 induces an equivalence on underlying homotopy
types: the prospace𝐻(Gal(𝐶)) is equivalent to𝐻(𝐷) ≃ 𝑆1. Theorem A now shows that
the protruncation of the étale homotopy type of the nodal cubic is 𝑆1.

We relate the étale homotopy type andprofiniteGalois category of a coherent scheme
by situating the problem in a more general context. In [3] we provided an equivalence
of∞-categories

(̃−) ∶ Pro(Str𝜋) ⥲ StrTopspec∞
between the∞-category of profinite stratified spaces (on the left) and the∞-category of
spectral stratified∞-topoi (on the right) [3, Theorem 10.10]. The primary example of
a spectral stratified∞-topos is the étale∞-topos 𝑋ét of a coherent scheme 𝑋 with its
natural stratification by the Zariski space of 𝑋 [3, Example 10.6]. The corresponding
profinite stratified space is the profinite Galois category Gal(𝑋) [3, Construction 13.5].

The equivalence Pro(Str𝜋) ≃ StrTopspec∞ provides a way to reconstruct the prospace
given by the shape of the étale∞-topos of a coherent scheme𝑋1 from its profiniteGalois
category Gal(𝑋), via the composite

Pro(Str𝜋) StrTopspec∞ Top∞ Pro(Spc) ,∼ 𝛱∞

where the middle functor functor forgets the stratification, and 𝛱∞ is the shape (see
Definition 1.3). There’s another functor𝐻∶ Pro(Str𝜋) → Pro(Spc) that doesn’t require
the use of∞-topoi, namely, the extension to pro-objects of the composite

Str𝜋 Cat∞ Spc ,𝐻

where the first functor forgets the stratification and the second functor sends an ∞-
category 𝐶 to the homotopy type 𝐻(𝐶) obtained by inverting every morphism in 𝐶. It
follows formally that these two functors agree on Str𝜋. Moreover, as the extension to
pro-objects of a functor Str𝜋 → Spc, the functor 𝐻∶ Pro(Str𝜋) → Pro(Spc) preserves
inverse limits. Thus we have a map

𝜃𝐶 ∶ 𝛱∞(𝐶) → 𝐻(𝐶)

natural in 𝐶 ∈ Pro(Str𝜋). In this note we prove that this map is an equivalence after
protruncation:

1This is, up to protruncation, the Artin–Mazur–Friedlander étale homotopy type of 𝑋; see [6, §5], which
we recall in Examples 1.6 and 1.9.
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CTheorem (Theorem 2.5). Let Spc<∞ ⊂ Spc denote the∞-category of truncated spaces,
and write 𝜏<∞ ∶ Pro(Spc) → Pro(Spc<∞) for the left adjoint to the inclusion. For any
profinite stratified space 𝐶, the natural map

𝜏<∞𝜃𝐶 ∶ 𝜏<∞𝛱∞(𝐶) → 𝜏<∞𝐻(𝐶)

of protruncated spaces is an equivalence.

In light of [3, Construction 13.5], Theorem A is immediate fromTheorem C.
Since the functor𝐻 and the shape𝛱∞ agree on Str𝜋 andboth𝐻 and 𝜏<∞ preserve in-

verse limits, by the universal property of the∞-category of pro-objects, Theorem C fol-
lows oncewe know that the the protruncated shape 𝜏<∞𝛱∞ preserves inverse limits.The
forgetful functor StrTopspec∞ → Top∞ factors through the subcategory Topbc∞ ⊂ Top∞ of
bounded coherent ∞-topoi and coherent geometric morphisms. Theorem C thus re-
duces to the following fact.

DTheorem (Proposition 2.2). The protruncated shape

𝜏<∞𝛱∞ ∶ Topbc∞ → Pro(Spc<∞)

preserves inverse limits.

In § 1 we review the necessary background on pro-objects and shape theory. The
familiar reader should skip straight to §2 where we proveTheorems C and D.

Acknowledgments. We thank Clark Barwick for his guidance and sharing his many
insights about this material. We also gratefully acknowledge support from both the mit
Dean of Science Fellowship and nsf Graduate Research Fellowship.

1 Preliminaries on shapes & protruncated spaces
In this section we review∞-categories of pro-objects and shape theory for∞-topoi.We
then record some facts about protruncations that we’ll need.

Review of shape theory
1.1. We say that a small∞-category 𝐼 is inverse if the opposite∞-category 𝐼op is filtered.
An inverse system in an∞-category 𝐶 is a functor 𝐼 → 𝐶, where 𝐼 is an inverse∞-
category. An inverse limit is a limit of an inverse system.

Let 𝐶 be an∞-category. We write Pro(𝐶) for the∞-category of pro-objects in 𝐶
obtained by freely adjoining inverse limits to 𝐶, and 𝑗∶ 𝐶 → Pro(𝐶) for the Yoneda em-
bedding. We say that a pro-object𝑋 ∈ Pro(𝐶) is constant if𝑋 lies in the essential image
of 𝑗∶ 𝐶 → Pro(𝐶). If𝑋∶ 𝐼 → 𝐶 is an inverse system, we write {𝑋𝑖}𝑖∈𝐼 ≔ lim𝑖∈𝐼 𝑗(𝑋𝑖) for
the pro-object it defines.

If 𝐶 is accessible and admits finite limits, then Pro(𝐶) is equivalent to the full sub-
category of Fun(𝐶, Spc)op spanned by the left exact accessible functors [SAG, Proposi-
tion A.8.1.6]. Let 𝑓∶ 𝐶 → 𝐷 be a left exact accessible functor between accessible∞-
categories which admit small limits. Then the functor 𝑓∶ Pro(𝐶) → Pro(𝐷) admits a

4

http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf#theorem.A.8.1.6
http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf#theorem.A.8.1.6


left adjoint𝐿∶ Pro(𝐷) → Pro(𝐶) [SAG, ExampleA.8.1.8].We refer to𝐿∘𝑗∶ 𝐷 → Pro(𝐶)
as the pro-left adjoint of 𝑓.

1.2 Notation. We write Cat∞ for the∞-category of∞-categories and Spc ⊂ Cat∞ for
the full subcategory spanned by the∞-groupoids, i.e., the∞-category of spaces.

We write Top∞ ⊂ Cat∞ for the∞-category of∞-topoi and geometric morphisms.
For any∞-topos 𝑿, we write 𝛤𝑿,∗ or 𝛤∗ for the global sections geometric morphism,
which is the essentially unique geometric morphism𝑿 → Spc.

1.3Definition. The shape𝛱∞ ∶ Top∞ → Pro(Spc) is the left adjoint to the extension to
pro-objects of the fully faithful functor Spc↪ Top∞ given by 𝐾 ↦ Fun(𝐾, Spc) [SAG,
§E.2.2]. The shape admits two other very useful descriptions:

• Let 𝑿 be an ∞-topos, and write 𝛤! ∶ 𝑿 → Pro(Spc) for the pro-left adjoint of
𝛤∗ ∶ Spc → 𝑿. The shape of 𝑿 is equivalent to the prospace 𝛤!(1), where 1 ∈ 𝑿
denotes the terminal object [HA, Remark A.1.10; 6, §2].

• As a left exact accessible functor Spc→ Spc, the prospace𝛱∞(𝑿) is the compos-
ite 𝛤∗𝛤∗ [HTT, §7.1.6; 6, §2].

1.4 Notation. We write 𝐻∶ Cat∞ → Spc for the left adjoint to the inclusion. The∞-
groupoid 𝐻(𝐶) is given by the colimit 𝐻(𝐶) ≃ colim𝐶 1Spc of the constant diagram
𝐶 → Spc at the terminal object 1Spc ∈ Spc.

1.5 Example. If𝐶 is a small∞-category, then𝛤∗ ∶ Spc→ Fun(𝐶, Spc) admits a genuine
left adjoint 𝛤! ∶ Fun(𝐶, Spc) → Spc given by taking the colimit of a diagram 𝐶 → Spc.
The shape of the∞-topos Fun(𝐶, Spc) is thus given by the colimit of the constant dia-
gram at the terminal object of Spc:

𝛱∞(Fun(𝐶, Spc)) = 𝛤!(1Fun(𝐶,Spc)) = colim𝐶 1Spc ≃ 𝐻(𝐶) .

Moreover, the functor𝐻∶ Cat∞ → Spc is equivalent to the composite

Cat∞ Top∞ Spc .Fun(−,Spc) 𝛱∞

1.6 Example ([6, Corollary 5.6]). If 𝑋 is a locally Noetherian scheme, then the Artin–
Mazur–Friedlander étale homotopy type of 𝑋 corepresents the shape of the hypercom-
plete2 étale∞-topos𝑋hypét of𝑋.

The shape of the étale∞-topos 𝑋ét of 𝑋 agrees with the Artin–Mazur-Friedlander
étale homotopy type up to protruncation (Example 1.9), to which we now turn.

Protruncated objects
In this subsection, we recall some facts about protruncated objects and record an inter-
esting observation (Lemma 1.11) that we couldn’t locate in the literature.

2See [HTT, §6.5.2] for a treatment of hypercomplete∞-topoi.
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1.7Notation. Let𝐶 be a presentable∞-category. For each integer𝑛 ≥ −2, write𝐶≤𝑛 ⊂ 𝐶
for the full subcategory spanned by the 𝑛-truncated objects, and 𝜏≤𝑛 ∶ 𝐶 → 𝐶≤𝑛 for the
𝑛-truncation functor, which is left adjoint to the inclusion 𝐶≤𝑛 ⊂ 𝐶 [HTT, Proposition
5.5.6.18]. Write 𝐶<∞ ⊂ 𝐶 for the full subcategory spanned by those objects which are
𝑛-truncated for some integer 𝑛 ≥ −2.

The pro-𝑛-truncation functor 𝜏≤𝑛 ∶ Pro(𝐶) → Pro(𝐶≤𝑛) is the extension of the 𝑛-
truncation functor 𝜏≤𝑛 ∶ 𝐶 → 𝐶≤𝑛 to pro-objects.
1.8. Let𝐶 be a presentable∞-category.Then the extension to pro-objects of the functor
𝐶 → Pro(𝐶<∞) given by sending an object 𝑋 ∈ 𝐶 to the inverse system given by its
Postnikov tower {𝜏≤𝑛(𝑋)}𝑛≥−2 is left adjoint to the inclusion Pro(𝐶<∞) ↪ Pro(𝐶). We
call this left adjoint 𝜏<∞ ∶ Pro(𝐶) → Pro(𝐶<∞) protruncation.

A morphism of pro-objects 𝑓∶ 𝑋 → 𝑌, regarded as left exact accessible functors
𝐶 → Spc, is an equivalence after protuncation if and only if for every truncated object
𝐾 ∈ 𝐶<∞, the induced morphism 𝑓(𝐾)∶ 𝑋(𝐾) → 𝑌(𝐾) is an equivalence.

1.9 Example. Since truncated objects are hypercomplete, for any∞-topos𝑿, the inclu-
sion𝑿hyp ↪ 𝑿 of the∞-topos of hypercomplete objects of𝑿 induces an equivalence

𝜏<∞𝛱∞(𝑿hyp) ⥲ 𝜏<∞𝛱∞(𝑿)

on protruncated shapes. In light of Example 1.6, the shape of the étale ∞-topos of a
locally Noetherian scheme𝑋 agrees with the Artin–Mazur–Friedlander étale homotopy
type of𝑋 after protruncation.

For an arbitrary scheme 𝑋, we simply refer to the shape 𝛱∞(𝑋ét) of the étale∞-
topos𝑋ét of𝑋 as the étale homotopy type of𝑋.
1.10. Let 𝐶 be a presentable∞-category. The essentially unique functor Pro(𝐶) → 𝐶
that perserves inverse limits and restricts to the identity 𝐶 → 𝐶 is right adjoint to the
Yoneda embedding 𝑗∶ 𝐶 ↪ Pro(𝐶) [SAG, ExampleA.8.1.7].Hencewe have adjunctions

𝐶 Pro(𝐶) Pro(𝐶<∞) .
𝑗 𝜏<∞

If Postnikov towers converge in𝐶, i.e.,𝐶 is a Postnikov complete presentable∞-category
[SAG, Definition A.7.2.1], then the composite left adjoint is also fully faithful:

1.11 Lemma. Let 𝐶 be a Postnikov complete presentable∞-category (e.g., a Postnikov
complete∞-topos). Then the protruncation functor

𝜏<∞ ∶ 𝐶 → Pro(𝐶<∞)

is fully faithful. Moreover, the essential image of 𝜏<∞ ∶ 𝐶 ↪ Pro(𝐶<∞) is the full sub-
category spanned by those protruncated objects 𝑋 such that for each integer 𝑛 ≥ −2, the
pro-𝑛-truncation 𝜏≤𝑛(𝑋) ∈ Pro(𝐶≤𝑛) is a constant pro-object.
1.12. Composing the fully faithful functor 𝜏<∞ ∶ Spc↪ Pro(Spc<∞)with the inclusion
Pro(Spc<∞) ↪ Pro(Spc) gives another embedding of spaces into prospaces: for a space
𝐾, the natural morphism of prospaces 𝑗(𝐾) → 𝜏<∞(𝐾) is an equivalence if and only
if 𝐾 is truncated. Unlike the Yoneda embedding, the functor 𝜏<∞ ∶ Spc ↪ Pro(Spc) is
neither a left nor a right adjoint.
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2 Limits & the protruncated shape
The shape does not preseve inverse limits, even of bounded coherent∞-topoi. In this
section we prove that, nevertheless, the protruncated shape preserves inverse limits of
bounded coherent∞-topoi. Our main theorem (Theorem 2.5) is an easy consequence.

2.1 Notation. Write Topbc∞ ⊂ Top∞ for the subcategory of bounded coherent∞-topoi
and coherent geometric morphisms [SAG, Definitions A.2.0.12 & A.7.1.2; 3, Definition
5.28].

2.2 Proposition. The protruncated shape

𝜏<∞𝛱∞ ∶ Topbc∞ → Pro(Spc<∞)

preserves inverse limits.

Proof. Let 𝑿∶ 𝐼 → Topbc∞ be an inverse system of bounded coherent∞-topoi and co-
herent geometricmorphisms. For each 𝑖 ∈ 𝐼, the forgetful functor 𝐼/𝑖 → 𝐼 is limit-cofinal
[HTT, Example 5.4.5.9 & Lemma 5.4.5.12], so wemay without loss of generality assume
that 𝐼 admits a terminal object 1. For each 𝑖 ∈ 𝐼, write

𝜋𝑖,∗ ∶ lim𝑗∈𝐼𝑿𝑗 → 𝑿𝑖

for the projection, 𝛤𝑖,∗ ≔ 𝛤𝑿𝑖,∗, and𝑓𝑖,∗ ∶ 𝑿𝑖 → 𝑿1 for the geometric morphism induced
by the essentially uniquemorphism 𝑖 → 1 in 𝐼.Write𝛤∗ ∶ lim𝑗∈𝐼𝑿𝑗 → Spc for the global
sections geometric morphism.

We want to show that the natural morphism

colim
𝑖∈𝐼op
𝛤𝑖,∗𝛤∗𝑖 → 𝛤∗𝛤∗

in Fun(Spc, Spc) is an equivalencewhen restricted to truncated spaces (1.8). By [3, Lemma
8.11] the natural morphism

colim
𝑖∈𝐼op
𝑓𝑖,∗𝑓∗𝑖 → 𝜋1,∗𝜋∗1

is an equivalence in Fun(𝑿1, 𝑿1). Since 𝑿1 is bounded coherent, the global sections
functor𝛤1,∗ ∶ 𝑿1 → Spc preserves filtered colimits of uniformly truncated objects [SAG,
Proposition A.2.3.1; 3, Corollary 5.55]. Thus for any truncated space 𝐾 we see that

colim
𝑖∈𝐼op
𝛤𝑖,∗𝛤∗𝑖 (𝐾) ≃ colim𝑖∈𝐼op 𝛤1,∗𝑓𝑖,∗𝑓

∗
𝑖 𝛤∗1 (𝐾)

⥲ 𝛤1,∗ (colim𝑖∈𝐼op 𝑓𝑖,∗𝑓
∗
𝑖 𝛤∗1 (𝐾))

≃ 𝛤1,∗ ∘ (colim𝑖∈𝐼op 𝑓𝑖,∗𝑓
∗
𝑖 ) ∘ 𝛤∗1 (𝐾)

⥲ 𝛤1,∗ ∘ 𝜋1,∗𝜋∗1 ∘ 𝛤∗1 (𝐾)
≃ 𝛤∗𝛤∗(𝐾) .
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Proof of the MainTheorem
We now prove the main result of this note. Recall that we write

(̃−) ∶ Pro(Str𝜋) ⥲ StrTopspec∞

for the equivalence of∞-categories of [3, Theorem 10.10].

2.3 Lemma. The square

Str𝜋 StrTopspec∞

Spc Pro(Spc)

(̃−)

𝐻 𝛱∞

𝑗

commutes.

Proof. By the definition of the equivalence Pro(Str𝜋) ⥲ StrTopspec∞ of [3, Theorem
10.10], the following square commutes

Str𝜋 StrTopspec∞

Cat∞ Top∞ ,

(̃−)

Fun(−,Spc)

where the vertical functors forget stratifications. Combining thiswithExample 1.5 proves
the claim.

2.4. Since the extension of 𝐻∶ Str𝜋 → Spc to pro-objects preserves inverse limits,
Lemma 2.3 shows that we have a morphism of prospaces

𝜃𝐶 ∶ 𝛱∞(𝐶) → 𝐻(𝐶)

natural in 𝐶 ∈ Pro(Str𝜋).

2.5Theorem. For any profinite stratified space 𝐶, the natural map

𝜏<∞𝜃𝐶 ∶ 𝜏<∞𝛱∞(𝐶) → 𝜏<∞𝐻(𝐶)

of protruncated spaces is an equivalence.

Proof. Since the forgetful functor StrTopspec∞ → Topbc∞ preserves inverse limits, Propo-
sition 2.2 implies that the protruncated shape 𝜏<∞𝛱∞ ∶ StrTopspec∞ → Pro(Spc<∞) pre-
serves inverse limits. Both 𝜏<∞ and 𝐻 preserve inverse limits, hence their composite
𝜏<∞𝐻∶ Pro(Str𝜋) → Pro(Spc<∞) preserves inverse limits. The claim now follows from
the fact that 𝜃𝐶 is an equivalence for 𝐶 ∈ Str𝜋 (Lemma 2.3) and the universal property
of the∞-category Pro(Str𝜋) of profinite stratified spaces.

2.6. Note that Theorem A from the introduction is immediate from Theorem 2.5, [3,
Construction 13.5], and the definition of the étale homotopy type in terms of shape
theory (Examples 1.6 and 1.9).
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